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Abstract—To achieve strict reliability goals with lower redun-
dancy cost, Time-Sensitive Software-Defined Networking (TSSDN)
enables run-time recovery for future in-vehicle networks. While
the recovery mechanisms rely on network planning to establish
reliability guarantees, existing network planning solutions are
not suitable for TSSDN due to its domain-specific scheduling
and reliability concerns. The sparse solution space and expensive
reliability verification further complicate the problem. We propose
NPTSN, a TSSDN planning solution based on deep Reinforcement
Learning (RL). It represents the domain-specific concerns with
the RL environment and constructs solutions with an intelligent
network generator. The network generator iteratively proposes
TSSDN solutions based on a failure analysis and trains a decision-
making neural network using a modified actor-critic algorithm.
Extensive performance evaluations show that NPTSN guarantees
reliability for more test cases and shortens the decision trajectory
compared to state-of-the-art solutions. It reduces the network cost
by up to 6.8x in the performed experiments.

Index Terms—TSD, SDN, Recovery, Network Planning.

I. INTRODUCTION

Time-Sensitive Networking (TSN) is considered a promising
solution for future In-Vehicle Networks (IVN). Leveraging the
standardized Ethernet solutions, TSN offers bandwidth that
constantly grows with the technology. Meanwhile, it introduces
amendments to provide real-time and reliable services for
automotive applications, which is beyond the scope of the
conventional Ethernet. In IEEE 802.1Qbv standard [1], Time
Aware Shaping (TAS) is specified to enable Time-Triggered
(TT) transmission which offers deterministic service for critical
control applications (e.g., flows for steering and braking).

Another essential requirement for IVN is to provide guaran-
teed reliability for these safety-critical flows. The reliability of
the flows is usually specified by the ISO 26262 standard for
Road Vehicles - Functional Safety [2]. Based on the severity,
exposure, and controllability of the failures, the standard defines
four Automotive Safety Integrity Levels (ASIL), denoted as
ASIL A-D from least to most critical. Additionally, the standard
defines ASIL decomposition to build high-ASIL functionalities
with redundant but low-ASIL components to reduce cost.
TSN addresses the reliability concerns in the IEEE 802.1cb
standard for Frame Replication and Elimination for Reliability
(FRER) [3], which specifies that frames can be replicated
and forwarded via redundant paths. FRER protection can be
designed as an ASIL decomposition problem [4]. However,
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Fig. 1: Design flow of in-vehicle TSSDN

since it relies on static redundancy, FRER is expensive and
requires duplicating the entire network in the worst case.

As the standard gradually matures, there is a strong trend
for TSN to evolve towards Time-Sensitive Software-Defined
Networking (TSSDN) [5], which enables adaptive network
management by decoupling the TSN control and data plane. In
networks with limited scale and sufficient global information
(e.g., the status of all switches), TSSDN demonstrates promis-
ing flexibility [6], reliability [7], and cost-efficiency [8]. Thus,
IVN is an ideal use case for it. An important application of
TSSDN is run-time recovery. With its rapid reconfiguration
capability, TSSDN can adaptively reroute the flows to bypass
failures, and arbitrary recovery strategies can be programmed
into its controller software, which inspires the innovation of
recovery mechanisms. Compared to FRER, run-time recovery
achieves the reliability goal with lower redundancy cost and
offers better protection against high-order failures [9].

Run-time recovery has recently received wide research atten-
tion. But existing techniques offer reliability in a “best-effort”
manner, i.e., they attempt to maximize the recovery capability
on given networks that are assumed to be sufficiently redundant.
Otherwise, the recovery mechanism by itself cannot provide
reliability guarantees. Therefore, TSSDN with run-time recov-
ery relies on the design flow illustrated in Fig. 1. The TSSDN
controller, which has been widely researched, can be reused
from the existing design. Then, tasks from both the applications
and the controller are partitioned, mapped to resources, and
scheduled. Later in the network planning stage, reliability
guarantees are established. The TSSDN network planning tools
must design the topology to provide the necessary redundancy
for recovery and specify the network components (links and
switches) in terms of ASIL. It is followed by the post-planning
design where the designers address other functional safety
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concerns, such as ensuring the partitioning property [10] via
policing and introducing system-level protection mechanisms.

Current network planning tools are developed for general
network planning problems and are not suitable for in-vehicle
TSSDN. There are three major challenges. First, TSSDN
involves domain-specific requirements. The component ASIL
must be allocated properly. Moreover, TSSDN must provide
strict latency guarantees for its flows. While general network
planning approaches consider a failure survivable if the residual
network remains connected [11], TSSDN recovery additionally
requires scheduling the flows on the residual network. Thus,
network planning must consider the dynamic recovery behavior
with the awareness of the domain-specific schedulability re-
quirement. The second challenge is the sparse solution space of
the problem. Due to the reliability requirement, TSSDN prefers
redundant topologies. But switches have a limited number of
ports, which restricts the connectivity of the networks. Thus,
although the number of topologies is huge, only a limited frac-
tion of it is valid for TSSDN. Typical optimization techniques
such as Cross-Entropy Method (CEM) [12] explore the solution
space stochastically to capture its latent pattern, then improve
the exploration strategy. However, for TSSDN, a completely
random exploration may seldomly acquire feasible solutions,
which makes the strategy update inefficient. Finally, reliability
verification is expensive. The reliability analysis applied to
every explored topology may involve checking the recovery
behavior for thousands of failure scenarios. Hence, efficient
exploration, which finds good solutions with fewer attempts,
and fast failure analysis are strongly preferred.

In this paper, we propose NPTSN, a network planning solu-
tion for in-vehicle TSSDN based on deep Reinforcement Learn-
ing (RL). Our insight is that any domain-specific requirement
can be represented by the environment dynamics of RL, and the
underlying pattern of the recovery behaviors can be captured by
deep neural networks to perform efficient exploration. Given the
component library and the flows, NPTSN iteratively constructs
the TSSDN with an intelligent network generator. To efficiently
explore the sparse solution space, we propose a knowledge-
based action generation, which actively prunes away invalid
actions, referred to as the Survival-Oriented Action Generation
(SOAG). In every iteration, NPTSN evaluates the reliability
of the TSSDN with a failure analysis. We define stateless
recovery behaviors and design the action space to limit the
failure scenarios being checked. Then, the SOAG proposes
actions and masks that contribute to the network reliability
based on the failure analysis. Thus, feasible solutions are more
likely to be explored. The RL-based decision maker selects the
action that modifies the TSSDN towards its reliability goal.
We use a novel encoding method to formulate the TSSDN and
the actions into its observation (input) in such a way that the
neural networks inside the RL-based decision maker can be
trained stably on the dynamic action space. We train the neural
networks using a modified actor-critic algorithm that integrates
the knowledge-based generation with the neural network-based
generation process. Our experiments show that compared with
existing solutions, NPTSN ensures reliability guarantees in

more test cases while reducing the network cost by up to 6.8x.
The paper is structured as follows. Section II introduces our

system model and the TSSDN planning problem. Section III
provides an overview of the NPTSN architecture. Section IV
discusses the intelligent network generator including the SOAG
and the RL-based decision maker. Section V introduces the
failure analyzer. We present the evaluation results in Section
VI, introduce the related works in Section VII, and conclude
the paper in Section VII.

II. SYSTEM MODEL

A TSSDN can be modeled as a 5-tuple (Gt, Gf , B, FS,
FI) in which Gt is the topology, Gf is the failure scenario,
B is the base period, and FS (FI) is the specification (state)
of the flows. The behavior of the TSSDN upon failures can be
generally represented by the Network Behavior Function (NBF)
denoted as Φ. In this section, we first discuss our TSSDN model
and then introduce its network planning problem.

A. TSSDN Model

The topology of a TSSDN can be represented as an undi-
rected graph Gt. The vertices of this graph (V) consist of
end stations (Ves) and the switches (V t

sw) selected during the
network planning stage to connect the end stations. deg(v)
denotes the degree of a vertex v ∈ V . The edges Et represent
links. Every undirected edge (u, v) ∈ Et denotes the bidi-
rectional connection between u and v. Note that we consider
links with uniform bandwidth, which is a typical setup for
TT transmission. NPTSN plans spatial redundancy to handle
random failures that permanently affect network components.
They can be caused, among others, by aging, electromigration,
and thermal cycling of the electronic components, whose prob-
ability can be predicted with reasonable accuracy. We assume
the switches and links to be fail-silent. A failure scenario Gf

can be represented by a subgraph of Gt, whose vertices V f

(edges Ef ) denote the malfunctioned nodes (links). Note that
when a link fails, connections are closed for both directions;
When a switch fails, any link attached to it cannot be used.

Real-time applications in TSN often generate frames to be
transmitted periodically. Such frame series are referred to as
flows. NPTSN considers TT flows, which are safety-related
flows for control purposes. To initiate a flow, applications in-
form the central user configuration [13] about its specification,
which consists of the source, destinations, period, and frame
size. The specification of all TT flows is denoted by FS. We
assume FS stays constant since the beginning of the network
because safety-critical applications in vehicles seldomly change
on the run. Based on FS, the central network configuration [13]
adaptively updates the network to handle failures.

TSN performs priority-based queuing, i.e., frames are
buffered in different egress queues based on their priorities.
TAS [1] specifies that the queues are controlled by the cor-
responding transmission gates, which cyclically execute the
schedule defined in the gate control list based on a globally
synchronized clock. The period of the global TAS schedule is
the base period B. It is determined before the network starts and
never changes on the run [5]. To recover flows from failures, the
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central network configuration re-schedules the flows resulting
in new flow states FI . FI consists of the flow paths, an ordered
set of links through which the flow will be forwarded, as well
as the time slots reserved on each link. TT flow scheduling is
a well-studied problem, on which run-time recovery relies to
restore flows from failures.

B. TSSDN Recovery Behavior
TSSDN adaptively changes its flow states in response to

failures, which essentially involves re-scheduling the TT flows
on the residual network. Because the recovery mechanisms
evolve constantly, NPTSN models the recovery behavior with a
general notion to cover a wide range of recovery mechanisms.
Arbitrary recovery behavior can be represented by a stateful
NBF Φs : Gt, Gf , B, FS, FI 7→ FI ′, ER, in which Gt, B,
FS, FI are the topology, base period, flow specification, and
flow state of the network before failures. Gf is a subgraph of Gt

representing the failures encountered (by both nodes and links).
The NBF models the process to re-schedule flows to bypass
failures, in which the bandwidth and timing guarantees of the
flows must be re-established. Without flow-level redundancy,
the recovery succeeds if all TT flows are schedulable. The
output FI ′ is the new flow state after recovery. If recovery fails,
i.e., there are flows whose bandwidth and timing guarantees
cannot be re-established, ER returns the error message. TSSDN
can propagate the error message to the applications to perform
system-level service degradation [9]. ER consists of node pairs.
Each node pair (s, d) ∈ ER (s, d ∈ V t

es) represents a pair
of source and destination nodes that FI ′ fails to recover,
i.e., ER = ∅ if recovery succeeds. When Gf is an empty
graph, we defined FI ′ = FI0 for any input FI . FI0 is the
initial flow state on topology Gt which is often generated
by offline approaches [7]. The corresponding ER0 is the
source and destination pairs between which the bandwidth and
timing guarantee of the flows cannot be established. NBF is a
deterministic function once the TSSDN controller is selected
and it can be obtained via network simulation.

Verifying the stateful NBF under multi-point consecutive
failures (e.g., link 1 fails first, then link 2 fails) is expensive in
terms of computation complexity because the flow state after
recovery FI ′ depends on FI , which is the flow states before
recovery. To consider the sequence with which the failures may
occur, an n-point failure requires verifying n! flow states. Thus,
NPTSN requires the NBF to be stateless. The stateless NBF is
defined as Φ : Gt, Gf , B, FS 7→ FI ′, ER. It means the flow
states after recovery do not depend on the previous flow state.
Thus, every failure scenario leads to only one flow state. [14]
is an example of such stateless recovery scheme. Some other
recovery schemes are stateful mostly because they compare FI
with Gf to only reschedule the disrupted flows [7], [9]. A minor
modification can make their NBF stateless: instead of using the
current FI as the reference, the new flow state can be computed
based on the initial flow state FI0 (Φs(Gt, Gf , B, FS, FI0)).
This does not impact the recovery of single-point failures. But
for multi-point consecutive failures, potentially more flows will
be reconfigured. Thus, the recovery process can become more
expensive.

TABLE I: A component library with normalized cost.
Switch Library

ASIL Cost w.r.t. # of ports Failure
4-port 6-port 8-port prob.

A 8 10 16 10−3

B 12 15 24 10−4

C 18 22 36 10−5

D 27 33 54 10−6

Link library

ASIL Cost/unit Failure
length prob.

A 1 10−3

B 2 10−4

C 4 10−5

D 8 10−6

C. Network Planning Problem

Network planning receives an undirected graph of possible
connections Gc, whose vertices V c contain the end stations
to be connected (Ves) and the set of optional switches (V c

sw).
Its edges Ec represent the set of optional links whose lengths
len(u, v),∀(u, v) ∈ Ec are the distances of the connection.
The available connections depend on the length of the network
cables, the placement of the nodes, and the wiring constraints
inside the vehicles. In the ideal case, Gc contains the complete
set of connections (Ec = {(u, v)|∀u ∈ V c

sw, v ∈ V c, u ̸= v}).
But in reality, especially for large networks, directly connecting
nodes on different sides of the diameter is infeasible. Thus, Ec

is typically a subset of the complete connections. The output
TSSDN topology Gt (Section II-A) is a subgraph of Gc that
connects the end stations with a subset of the optional links and
switches, i.e., V t

sw ⊆ V c
sw, Et ⊆ Ec. Note that the end stations

are defined by the applications so their cost, ASIL, and the
maximum number of ports are assumed given.

Network planning involves choosing the links and switches
from the component library. Note that small switches can
be combined into large switches. These combined switches
can also be included in the library to enable more port
options. An example library is shown in TABLE I. We will
discuss how it is obtained in Section VI. Besides specifying
the network topology, NPTSN also specifies ASIL for links
ASILu,v,∀(u, v) ∈ Et and switches ASILv,∀v ∈ V t

sw. Then,
switches with the fewest ports (lowest cost) can be selected
while links can be chosen directly from the library. More
specifically, the cost of a switch v ∈ V t

sw is a function of its
degree and ASIL csw(deg(v), ASILv). More ports and higher
ASIL lead to higher costs. Also, to ensure that feasible switches
exist, the topology must constrain the switch degrees, e.g., the
maximum switch degree allowed in the example above is 8.
Meanwhile, the cost of a link (u, v) ∈ Et is determined by
its ASIL and cable length clk(ASILu,v, len(u, v)). NPTSN
supports arbitrary cost functions for links. Eq. 1 computes the
cost of a network Gt whose ASIL has been specified.

network cost =
∑

v∈V t
sw

csw(deg(v), ASILv)

+
∑

(u,v)∈Et

clk(ASILu,v, len(u, v))
(1)

The component failure probability depends on its ASIL and
can be denoted as a function cfp(ASIL). Eq. 2 gives the
probability that a failure Gf happens.

probability of failure Gf

=
∏

v∈V f

cfp(ASILv)×
∏

(u,v)∈Ef

cfp(ASILu,v) (2)
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The ISO 26262 standard [2] requires eliminating single or
dual-point failures. High-order failures can be considered safe
faults which do not significantly impact the reliability objective.
We generalize this for TSSDN with dynamic redundancy. The
network level reliability guarantee is specified as the maximum
probability of safe faults, denoted as R. Network planning must
provide sufficient spatial redundancy so that the network can
be recovered from any failure with a probability larger than
R. Thus, NPTSN is not restricted to certain failure orders. But
analyzing extremely rare failures will require high computation
complexity. Without redundant flows, the network fails if an end
station fails. Thus, end stations naturally require high reliability
so that their failures are considered safe faults.

In summary, network planning receives the graph of possible
connections Gc, the base period B, the flow specifications FS,
the stateless NBF Φ, the reliability goal R, and the component
library as input. Its output includes the network topology Gt, as
well as the ASIL allocated to its links (ASILu,v,∀(u, v) ∈ Et)
and switches (ASILv,∀v ∈ V t). The objective of network
planning is to minimize the network cost subject to the degree
constraint and the reliability guarantee.

III. OVERVIEW OF NPTSN

In TSSDN, the correlation between topology and reliability is
determined by the complex network behavior, which makes ef-
ficient optimization difficult. Meanwhile, traditional approaches
typically rely on heuristics that assume certain properties of the
recovery mechanism. They might require frequent adjustment
as new recovery mechanisms emerge. Thus, NPTSN consid-
ers a wide range of recovery mechanisms through the NBF
abstraction and performs efficient optimization with RL.

Fig. 2 illustrates an overview of NPTSN. It consists of
two major components, an intelligent network generator and
a failure analyzer. The network generator iteratively proposes
TSSDN solutions and the failure analyzer verifies the reliability
requirement to provide feedback to the network generator. The
process starts with an empty TSSDN consisting of end stations
only (no link or switches). Within the network generator, the
SOAG dynamically generates a coarse-grained action space
consisting of switch upgrade and path addition actions, which
prunes away invalid actions. These actions aim to resolve the
non-recoverable failures found during the last failure analysis so
they potentially improve the reliability of the proposed TSSDN.
The RL agent makes the decision to execute one of the provided
actions, resulting in an updated TSSDN solution. Then, the
failure analyzer checks if the network can survive all non-safe
faults by simulating the NBF. If the reliability requirement is
met, the solution is recorded and the TSSDN is reset to empty
for the next attempt.

In RL, each decision of action is referred to as a step. The
RL agent decides the next action using deep neural networks.
The neural networks are trained for a specified number of
iterations (epochs). In every epoch, the RL agent first runs
the current neural networks for a specified number of steps
and then performs a gradient update to minimize the cost of
the generated TSSDN. When the training finishes, the best
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Fig. 2: An overview of NPTSN

TSSDN solution discovered (during all epochs) is the result
of the network planning problem.

IV. INTELLIGENT NETWORK GENERATOR

In this section, we first provide a brief introduction of RL
then discuss the intelligent network generator, which consists
of the SOAG and the RL-based decision maker.

A. Introduction to RL

RL is a delicate approach for multi-step decision-making
problems, which are challenging due to computation complex-
ity. It models the decision process as an agent interacting
with the surrounding environment to gain rewards. The agent
observes the environment and “learns” its latent pattern to
improve its strategy. The environment then changes its state
according to the actions and provides rewards to the agent
based on the decision problems. RL has several advantages.
It can directly represent the desired properties via environment
dynamics and perform active exploration of the solution space,
obviating human efforts in designing and tuning heuristics [15].
Moreover, deep RL leverages deep neural networks to identify
the impact of the actions even if the corresponding reward is
delayed [16]. Thus, it often outperforms human experts, which
tend to make greedy decisions in complex problems.

The RL problem can be formulated by Eq. 3 [17]. θ(π)
represents the policy, which is the strategy to select actions,
parameterized by π. τ is the trajectory obtained through the
policy, which consists of sequences of states (st) and actions
(at), i.e., τ = {..., st, at, st+1, at+1, ...}. γt is the discounted
reward obtained by performing action at at state st. RL aims
at finding the optimal policy that maximizes the reward ex-
pectation. Deep RL represents the policy with neural networks,
which takes the current state as input (observation) and decides
the next action. The parameters of the neural networks can be
optimized through gradient-based methods.

π∗ = argmax
π

Eτ∼θ(π)

[∑
γt(st, at)

]
(3)

NPTSN formulates the TSSDN planning problem as an RL
problem. Section IV-B introduces our NBF-knowledge-based
action generation. Section IV-C discusses the design regarding
reward, neural networks, encoding, and training algorithms.
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Algorithm 1: Compute path addition actions and masks

input : connection graph Gc, topology Gt, failure Gf ,
error message ER, parameter K;

output: path actions and masks
1 Randomly select (s, d) ∈ ER
2 G = Gc// V (E) is nodes (edges) of G
3 G.remove nodes(V f ∪ (V c

sw \ V t
sw))

4 G.remove edges(Ef )
5 PathAction = K Shortest Path(G, s, d,K)
6 mi = 1,∀mi ∈ PathActionMask
7 for pi ∈ PathAction do
8 G′ = (V,E ∪ pi)
9 if (∃v ∈ V ′

sw, deg(v) > MaxSWDegree) ∨
(∃v ∈ V ′

es, deg(v) > MaxESDegree) then
10 mi = 0
11 end
12 end

B. Survival-Oriented Action Generator

A good action design aids the RL agent to explore good
solutions. We design the actions in NPTSN to tune paths instead
of individual links because paths are the minimum connectivity
from the perspective of the flows. To avoid enumerating all
possible paths, NPTSN dynamically generates paths in the
action space based on the feedback from the failure analysis.

The SOAG takes two inputs from the failure analyzer: Gf

which is an unrecoverable failure scenario and ER which is
the error message under that failure. The goal of SOAG is to
generate the actions that can potentially help the TSSDN to
survive the failure Gf . The dynamic action space consists of
|V c

sw| switch upgrade actions and K path addition actions. To
disable invalid actions, every action is associated with a bit in
the action mask. The RL agent is designed to only select the
actions masked by one. Note that K is an adjustable parameter.
Higher K indicates a larger coverage of the solution space
while lower K leads to faster action generation and smaller
neural networks. The actions are as follows.

• Switch upgrade: switch upgrade actions add new switches
with the lowest ASIL or increases the ASIL of existing
switches. When a new switch is added, its ASIL is set to
A. Otherwise, if a switch has been added and its ASIL is
lower than D, the corresponding action increases its ASIL
by one level, e.g., A to B. ASIL-D switches cannot be
upgraded so their masks are set to zero.

• Path addition: path addition actions add new paths com-
puted by Algorithm 1 to the networks. The SOAG attempts
to connect one source and destination pair randomly
selected from the error message each time (line 1). Every
path is a set of links from the source to the destination and
it can only traverse switches that have been previously
added. Algorithm 1 obtains optional paths via the k
shortest path algorithm [18] and disables masks for paths
that violate the degree constraint (line 6-12).

During both switch upgrades and path addition, we ensure
that the ASIL of every link (u, v) equals the lowest ASIL of
the adjacent vertices u and v. There are three major reasons.

First, further increment of the link ASIL increases the network
cost but has a negligible impact on system reliability. Second,
introducing extra actions to tune link ASIL leads to a huge
action space that is not scalable. Finally, as we will discuss in
Section V, it significantly simplifies the failure analysis.

An advantage of the dynamic space in NPTSN is that its
actions are more likely to improve the network toward a valid
solution. In contrast, actions that add individual links [16]
require a series of good decisions to achieve a similar improve-
ment and it is more difficult to discover a good policy during
the exploration phase. Besides this, our coarse-grained actions
shorten the decision trajectory, i.e., unnecessary connectivity is
less likely to be introduced and less effort will be spent on the
(costly) failure analysis. Note that NPTSN constructs TSSDN
monotonically, i.e., switch degradation and link removal actions
are not allowed. Any networks achievable with these additional
actions can be obtained without them. Moreover, they cause a
negative impact on algorithmic scalability and make it difficult
to determine when the exploration should stop.

Note that an alternative option to generate the path addition
actions is to find K paths satisfying the degree constraint with
their masks all set to one. This provides more actions for the
RL agent. However, in case valid paths do not exist, it would
exhaustively check all paths between the source and destination
pair, which is not acceptable because of the execution time.

C. RL-Based Decision Maker

The RL-based decision maker is based on the actor-critic
algorithm [19], which requires two neural networks: an actor
network to represent the policy and select actions, and a critic
network to estimate the value function of the selected actions.
This section explains the RL-based decision maker in detail.

Reward Design: the cost objective is encoded by the reward.
The reward of every action equals the previous network cost
minus the network cost after the action is taken. Hence, the
sum of the reward when a valid solution is found approxi-
mately equals the negative network cost (the discount factor
is typically less than 1 to avoid an infinite reward sum). The
agent maximizes the reward to minimize the network cost. We
scale down the reward into [-1, 0) by multiplying it with a
reward scaling factor, which is a widely used technique to avoid
saturation and inefficiency problems [20]. If a valid solution
has not been found when there are no valid actions (all action
masks are zero), the final reward is subtracted by one as an extra
penalty. Note that giving positive rewards for valid solutions is
an alternative and leads to similar training results.

Neural Network Architecture: Graph Convolutional Net-
works (GCN) [21] is a well-developed neural network architec-
ture to efficiently extract information from graph-based data. Its
motivation is to propagate messages between adjacent vertices
in every GCN layer. By concatenating multiple such layers,
global features can be extracted into a low-dimension graph
embedding vector. More precisely, the layer-wise propagation
rule in GCN can be represented by Eq. 4 [21], where H l is the
output matrix of layer l. A is the adjacency matrix of the input
graph. The identity matrix I adds the self-connection to A. D is
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Algorithm 2: Actor-critic algorithm in the RL-based decision maker
input : connection graph Gc; TSSDN specifications B, FS, Φ, R; component library; SOAG Parameter K
output: the best TSSDN found

1 Initialize neural networks with randomized parameters
2 for i ∈ {1, ...,maxepoch} do

// explore current policy
3 Initialize TSSDN (topology with end stations only), Action, and Mask; clear RL Buffer
4 for j ∈ {1, ...,maxstep} do
5 Logit, V alue = Forward(Obs,Action) // forward propagation of neural networks, Obs is

the observation (adjacency and feature matrix) of the current TSSDN
6 MaskedLogit = Apply Mask(Logit,Mask) // logit is −∞ when masked by zero
7 a = Sampling(Action,MaskedLogit) // get the next action by sampling
8 TSSDN,Reward = Apply Action(TSSDN, a)
9 Gf , ER = Failure Analysis(TSSDN,B, FS,R,Φ) // by Algorithm 3 in Section V

10 if ER = ∅ then // reliability requirement is met
11 Record the best solution; reset TSSDN
12 end
13 Action,Mask = SOAG(Gc, TSSDN,Gf , ER,K) // by Algorithm 1 in Section IV-B
14 if ∀m ∈ Mask,m = 0 then
15 Reset TSSDN ; Reward = Reward− 1// penalty for invalid solutions
16 end
17 Store Obs, a, V alue,Reward, Logit in RL Buffer
18 end

// train neural networks with buffered data
19 Compute advantage estimation based on the value obtained
20 Gradient ascent on GCN+actor MLP to maximize the PPO objective function
21 Gradient descent on GCN+critic MLP to minimize the mean-squared error of the value function
22 end
23 return the best solution found
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Fig. 3: Neural Network Architecture in the RL agent

the degree matrix of the self-connected adjacency matrix, i.e.,
Di,i =

∑
j(Ai,j + Ii,j). W l is the learnable weight at layer l.

H(l+1) = σ
(
D− 1

2 (A+ I)D− 1
2H lW l

)
(4)

TSSDN is naturally represented by graphs. Hence, NPTSN
uses GCN to extract information from the graph representations
of TSSDN. The neural networks in NPTSN are illustrated in
Fig. 3. For TSSDN, the observation of the current state, which
is the input of the GCN, consists of an adjacency matrix (A)
and a list of node features (H). The node features are encoded
into a |V c| × x matrix in which x is the number of node
features (x can be an arbitrary positive integer). The output
of the GCN is a low-dimension graph embedding vector. To

obtain the policy, the actor network takes the graph embedding
as input and determines the logit probability from which the
next action will be sampled. Parameters, such as flow periods
and frame sizes, are not features of the graph. They can be
represented by a vector for each flow. These vectors together
with the vector of the network parameters (e.g., base period)
are concatenated with the graph embedding vector as the input
of the actor network. The critic network takes the same input as
the actor network and produces a real number to estimate the
value function of the selected actions. NPTSN uses Multi-Layer
Perceptrons (MLP) for both the actor and critic networks

A possible alternative for GCN is the Graph Attention Net-
works (GAT). GAT introduces masked self-attentional layers
to reduce the cost of assigning different weights to different
neighboring nodes [22]. We do not select GAT because it has
been outperformed by GCN in similar problems [16]. Besides,
GAT is less scalable due to its massive memory consumption.

Encoding Method: to train the neural networks stably on a
dynamic action space, both the network status and the dynamic
actions should be encoded into the features of GCN, i.e., the
states contain information regarding available actions. Thus, the
GCN has four categories of input features as follows.

• Switch features: switch features are represented by a
|V c|×1 vector. Every element indicates the cost of a ver-
tex. The switch cost is computed by csw(deg(v), ASILv)
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while the end station cost is set to zero.
• Link features: link features are represented by a |V c| ×
|V c| matrix. Every element indicates the cost of the link
(u, v) computed by clk(ASILu,v).

• Flow features: flow features are represented by a |V c| ×
|V c

es| matrix. Every element indicates the number of flow
paths required by FS between u ∈ V c and v ∈ V c

es. The
element is set to zero if u is a switch.
Note that counting only the number of paths loses infor-
mation when flows have diverse parameters (e.g., period,
frame sizes). A possible alternative is to represent the flow
features with a |V c| × |FS| matrix, where the source and
destinations for each flow are represented by each column
(e.g., source = 1, destination = 2, other vertices = zero).
However, since there can be significantly more flows in a
network than end stations, such encoding is less scalable.

• Dynamic actions: the actions are represented by a |V c|×
|K| matrix. An element is set to one if the corresponding
vertex is traversed by the path, otherwise zero.

The overall feature matrix is the concatenation of the four
feature matrices whose size is |V c| × (1+ |V c|+ |V c

es|+ |K|).
The actor-critic algorithm: Algorithm 2 demonstrates the

actor-critic algorithm [19] for training. In every epoch, the
algorithm explores the current policy to gather a pre-defined
number of steps, then updates the neural networks to improve
the policy. In every step, the actor network determines the
probability to select each action. The probability is filtered
by the mask (line 6) using the technique in [16] to prevent
invalid actions from being sampled. But the buffer must store
the original policy without applying the mask (line 17) to ensure
the correctness of the gradient computation. With the degree
constraint enforced by the action mask, feasible solutions can
be identified by checking the reliability goal only (line 9). If a
solution is found, the TSSDN is reset for the next exploration
as attempting more actions will further increase the network
cost. If SOAG determines that no valid actions could be taken,
the TSSDN is also reset to empty and the penalty is subtracted
from the reward (line 15).

Since the dynamic actions are encoded into the feature matrix
of Obs, training can be conducted with normal policy gradient
methods for a static action space. The actor network is trained
using the Proximal Policy Optimization (PPO), which is a state-
of-the-art policy gradient method emulating monotonic gradient
improvement [23], i.e., it attempts to update the gradient
with the largest possible step while not causing performance
collapse. The alternative to PPO is the Trust Region Policy
Optimization (TRPO) [24], which guarantees the monotonic
gradient improvement with a second-order method. Compared
with TRPO, PPO reaches better sample complexity with first-
order methods that is much simpler to implement [23]. The PPO
objective is shown in Eq. 5, in which rt(θ) is the probability
ratio of the policy update. It is clipped into [1−ϵ, 1+ϵ] to form a
lower bound of the conservative policy iteration objective [25].
Ât is the advantage function. Our implementation uses the
well-known Generalized Advantage Estimation (GAE)-Lambda

Algorithm 3: Failure injection algorithm
input : topology Gt; specifications B, FS, R and Φ;
output: a non-recoverable failure and its error message
// compute max failure order

1 Sort the switches in V t
sw by the reducing order of

failure probability, i.e., V t
sw = {v1, v2, ...} , maxord is

the maximum k so that
∏

i=1,...,k cfp(ASILvk) ≥ R

// check reliability requirement
2 checked = ∅
3 for i ∈ {maxord, ..., 1, 0} do

// check all subsets with i elements
4 for V f ∈ combinations(V t

sw, i) do
5 if

∏
v∈V f cfp(ASILv) ≥ R and

∀ V ∈ checked, V f ̸⊆ V then
// check recoverability

6 Gf = (V f , ∅) // Ef = ∅
7 FI ′, ER = Φ(Gt, Gf , B, FS)
8 if ER ̸= ∅ then
9 return Gf , ER // Gt invalid

10 end
11 checked = checked ∪ {V f}
12 end
13 end
14 end
// reliability requirement is met

15 return empty graph, ∅

advantage function [26].

Lclip(θ)=Et

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
(5)

The gradient descent on the critic network minimizes the
mean-squared error of the value estimation, which is a common
practice in actor-critic algorithms [19]. In total, the weights of
the GCN are updated twice to improve the performance for
both the actor and the critic networks. In our implementation,
all gradient updates are performed with the well-known Adam
gradient optimization algorithm [27].

A challenge to implementing Algorithm 2 is that the failure
analysis is very expensive in terms of execution time. In
this case, popular GPU acceleration techniques that mainly
accelerate the neural networks bring limited benefit. Therefore,
we parallelize Algorithm 2 using CPU which speeds up both
the neural networks and the failure analysis. The idea is that
the policy can be explored independently by each processor
with the results stored in a local buffer (line 3-18). Given m
processors, every processor only needs to explore maxstep/m
steps so the overall execution time can be reduced. To train
the neural networks (line 19-21), the processors perform a
distributed gradient computation to obtain a global gradient
estimation. This involves calculating the average value of the
gradient estimator over different processors [28]. With the same
global gradient distributed to each processor, the processors per-
form a synchronized gradient update for their neural networks.
It ensures that the policy is coherent for the next epoch.
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V. FAILURE ANALYZER

The failure analyzer injects failures into the TSSDN to
evaluate its reliability. If the reliability guarantee is established,
the solution can be recorded. Otherwise, the failure analyzer
identifies a non-recoverable failure scenario for the SOAG to
generate dynamic actions of the next iteration.

The failure analyzer supports arbitrary stateless NBF as its
input. It is also based on a characteristic of the action space,
i.e., the ASIL of every link (u, v) equals the lowest ASIL of the
adjacent vertices u and v. Based on these conditions, the failure
analyzer only checks the non-safe faults consisting of switch
failures to ensure the reliability guarantee. In other words,
although failures could occur with arbitrary links and switches,
an exhaustive check of all possible faults is not necessary. The
proof is as follows. Given an arbitrary failure Gf which is
a non-safe fault containing link failures (Ef ̸= ∅), it can be
mapped to the failure scenario V ′f in Eq. 6 that only consists
of the switch failures. Note that low(u,w) in Eq. 6 returns the
node with the lowest ASIL and, since end station failures are
safe faults, Gf does not contain end stations.

V ′f = {v|∃(u,w) ∈ Ef , v = low(u,w) ∨ v ∈ V f} (6)

The ASIL of each link equals the lowest ASIL of the adjacent
vertices. Thus, V ′f has a higher probability than Gf . Hence,
V ′f is also a non-safe fault which the network must survive.
Moreover, since a failed switch will disable all links attached to
it, the residual network of failure V ′f is a subgraph of that of
Gf . Thus, if the network can survive V ′f , the same flow state
can also survive the failure of Gf (we assume the recovery
mechanism is capable of finding it at run-time). Therefore,
checking Gf is not necessary.

The failure analyzer executes the failure injection algorithm
presented in Algorithm 3. It checks possible switch failures
starting from the highest order (maximum number of compo-
nents that fails, denoted by maxord). Since the flow state that
survives failure V can also survive failure V f if V f ⊆ V , the
failures checked are recorded to avoid checking their subsets
again (line 11). The algorithm runs the specified NBF for
failures with a probability larger than R and whose superset
has not been checked. The algorithm involves running the NBF
O(|V t

sw|maxord) times. Because maxord depends on the failure
rate of the switches, Algorithm 3 has exponential complexity
(usually with a small exponent) if a polynomial time NBF, such
as the recovery algorithm in [9], is given.

NPTSN can consider flow-level redundancy with a minor
modification of the failure analysis (no need to change the
intelligent network generator). In such cases, the NBF reports
error messages when all redundant flow instances fail. The
failure analysis then should check the possible failures for all
network nodes to determine possible violations of the reliability
goal (replacing all V t

sw in algorithm 3 into V t). Thus, the
complexity of algorithm 3 becomes O(|V t|maxord).

VI. EVALUATION

We implement NPTSN on a server equipped with an Intel
core i9-9900K processor. The RL agent is implemented using

TABLE II: NPTSN default RL parameters
Parameter Value Parameter Value

Number of GCN layers 2 K 16
MLP hidden layers 256x256 maxepoch 256

Graph embedding features 2× |V c| maxstep 2048
Reward scaling factor 103 Clip ratio ϵ 0.2
Learning rate (actor) 3× 10−4 GAE Lambda 0.97
Learning rate (critic) 10−3 Discount factor 0.99

PyTorch [29]. The training algorithm is based on the Spin-
ningUp RL library [28]. It is paralleled over 8 cores which
communicate with MPI. The SOAG and the failure analyzer
are implemented with Python for simple integration.

We evaluate NPTSN with two design scenarios: ORION [30]
and ADS [31]. ORION is the design problem abstracted from
the network architecture in the ORION crew exploration ve-
hicle [30]. It is an aerospace network with a size larger than
typical automotive TSSDN. Hence, we use it to demonstrate
the solution quality and scalability of NPTSN. ADS is a design
problem abstracted from an autonomous driving system [31].
It is realistic for IVN design. Thus, we use it for a sensitivity
test which reveals the impact of different parameter settings.
Note that our experiments for different design scenarios show
similar trends. So, we only present the most suitable design
scenarios for each evaluation for conciseness.

In all of the design scenarios, the NBF is selected to be the
heuristic recovery algorithm in [9]. The maximum end station
degree is set to 2, which is the minimum number to establish
redundancy. Because the wiring distance in commercial vehi-
cles is not available, we set the lengths of all optional links
to be 1 unit length for simplicity. R is set to 10−6, which is
the minimum value that allows an ASIL-D device to function
without a backup (so we can use the original ORION topology
for baseline). The RL parameters are based on the default
settings in the SpinningUp library, listed in TABLE II.

A. Performance Evaluation

The ORION design scenario requires planning a network
with 31 end stations and 15 (optional) switches. We assume
that a feasible link exists for any network node pairs within 3
hops in the original topology, resulting in 189 optional links
inside Ec. The base period is set to 500 µs, which is uniformly
divided into 20 time slots. Since the original ORION network
hosts no more than 5 TT flows, we generate randomized flow
specifications to test NPTSN with up to 50 flows. All flows are
periodic unicast flows with period and deadline both being 500
µs. The sources and destinations are randomly selected from the
end stations with uniform distribution. We generate test cases
with 10, 20, 30, 40, and 50 flows, ten test cases for each number
of flows, resulting in 5×10=50 test cases in total. Two metrics
are evaluated: the percentage of the test cases satisfying the
reliability requirement and the cost of the best solution. To the
best of our knowledge, NPTSN is the first work that addresses
the network planning problem for TSSDN protected by run-
time recovery. Baselines for the exact same problem cannot be
found in the literature. Thus, we compare NPTSN with three
state-of-the-art solutions targeting similar problems.

• The original network: the manually designed topology
for ORION can be found in [30]. We assign ASIL to its
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Fig. 4: Performance evaluation results

components for comparison with NPTSN solutions. In the
original topology, since every end station is connected to
one of the switches via a single link, single-point failures
can completely isolate the end stations from the rest of the
network. Hence, all network components require ASIL-D
to ensure the reliability guarantee.

• The TRH algorithm: TRH is a heuristic algorithm pro-
posed in [4] to synthesize topology for TSN with FRER
protection. FRER provides reliability guarantees with
static redundancy. It involves creating multiple disjoint
FRER paths per flow and scheduling the flows simultane-
ously on their FRER paths. TRH does not consider ASIL
but instead requires specifying the number of disjoint paths
per flow. It adds the paths to the networks based on a
breadth-first search algorithm. For comparison, we assign
ASIL-B to all network components and use TRH to create
two FRER paths per flow. Thus, the reliability guarantee is
provided according to the ASIL decomposition rules [2].
Note that TRH does not consider schedulability. Instead,
it is checked afterward to report invalid solutions.

• NeuroPlan: NeuroPlan is a state-of-the-art network plan-
ning tool for optical networks [16]. It first obtains initial
solutions with RL and then optimizes the final results
using Integer Linear Programming (ILP). Because it is
impossible to model run-time recovery with ILP, we
only adopt the RL stage as our baseline. The NeuroPlan
agent chooses actions from a static action space to add
capacity to different links without ASIL in its concern. For
comparison, we modify the action into adding links and
assigning switch ASIL. The link ASIL is determined by
the ASIL of the adjacent switches same as in NPTSN. The
NeuroPlan environment deals with the constraints of the
optical networks. We modify it to reward the agent based
on the network cost and the reliability same as NPTSN.

All solutions use the component library in TABLE I. Note
that our component library is modified from the library in [4].
The original library does not consider ASIL and only contains
switches with 3, 4, and 5 external ports. However, the ORION
topology [30] requires switches with up to 8 ports. To make it
suitable for all baselines, we assume that the ASIL-A switches
have the same cost but 4, 6, and 8 ports. According to [32],
increasing the ASIL by one level will increase the development

cost by 1.25x-2x. Thus, we increase the switch (link) cost by
1.5x (2x) per ASIL. The failure probability is set according to
the failure rate specified in ISO26262 [2]. We assume failures
following the exponential distribution over 1000 working hours,
e.g., the failure rate for ASIL-D is 10−9, then the failure
probability is 1− e−10−9∗1000 ≈ 10−6.

In ORION test cases, the training of NPTSN takes approxi-
mately 39s per epoch, i.e., a test case takes around 2.7h without
an early stop. The percentage of test cases with reliability
guarantee for different numbers of TT flows is illustrated in
Fig. 4(a). NPTSN guarantees reliability in all test cases. Given
ASIL-D links and switches, the original ORION topology is
also a valid solution for all test cases. However, for TRH and
NeuroPlan, their capability to provide reliability guarantees
significantly reduces when the network load increases. TRH
cannot guarantee reliability for test cases with more than 20
flows. The main reason is that it does not consider schedu-
lability, i.e., links can be shared by too many flows, which
makes scheduling impossible. FRER redundancy doubles the
network load, which aggravates the problem. NeuroPlan is not
feasible for test cases with more than 30 flows mainly because
its action design is not suitable for the sparse solution space.
Although any topology can be constructed by adding individual
links, it requires a long decision trajectory prone to mistakes.
During the stochastic exploration, bad decisions could saturate
the ports (degrees) of the switches preventing essential links
from being added. As a result, the exploration frequently ends
before solutions are found because switch degrees have been
fully occupied. NPTSN does not suffer from these problems.
Adding paths instead of links shortens the decision trajectory
and the SOAG prunes away bad decisions. Thus, valid solutions
are more likely to be found during stochastic exploration.

The network cost acquired by different approaches is illus-
trated in Fig. 4(b). The original topology always leads to the
highest cost (i.e., 986) since it only uses ASIL-D components.
In contrast, NPTSN achieves the lowest cost in all test cases.
For instance, the minimum cost obtained by NPTSN is 146 for
test cases with 10 flows, i.e., the cost achieved with NPTSN is
up to 6.8x lower than the original network. TRH requires higher
network costs to provide the same reliability as NPTSN. For
instance, in the same test case where the cost by NPTSN is 146,
the cost by TRH is 272 (1.8x). It is essentially because TRH
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Fig. 5: Sensitivity test results

improves network reliability by replicating paths for individual
flows. It does not consider how the added redundant links can
be reused in different recovery scenarios (e.g., failures and
flows). NPTSN instead performs more efficient optimization
as it considers the reliability and cost impact of every path
added through reward. NeuroPlan leads to higher costs even
if it is modified to consider run-time recovery. This is again
due to its long decision trajectory, since its RL agent makes
stochastic decisions to add individual links. This causes a higher
probability to introduce futile links. In NPTSN instead, paths
are added targeting specific failure scenarios, which reduces the
probability to introduce unnecessary connectivity.

Fig. 4(c) shows the distribution of the switches by their
ASIL. Note that it only includes NPTSN and NeuroPlan
because TRH and the original network allocate static ASIL
to all switches (ASIL-B and ASIL-D). NPTSN incrementally
upgrades switches to approach the solution from lower ASIL.
In contrast, NeuroPlan explores the allocation of switch ASIL
without search space pruning. It tends to use high-ASIL
switches more frequently. For example, 31.1% of the switches
are ASIL-D when there are 30 flows. This is an important
reason for its high network cost. It implies that, at least with
our setup, redundant networks with low ASIL components can
be more cost-efficient than dense networks that require high
ASIL components.

B. Sensitivity Test

The ADS design scenario involves planning the network for
an autonomous driving system [31] using the component library
in TABLE I, where NPTSN connects 12 end stations using a
maximum of 4 switches. For ADS, Gc contains the complete
set of connections, i.e., there are 54 optional links in Ec. Since
the original flows are not available, we generate 12 flows using
the same specification in Section VI-A based on the 7 safety-
related applications onboard [31]. More precisely, there are two
flows per application except for the vehicle state estimation
which relies on other sensing applications to provide data. The
optional links allow arbitrary connection except for the direct
connection between end stations. we vary the three customized
parameters (number of GCN layers, MLP hidden layer sizes,
and K), one at a time, to demonstrate their impact on the
training process. For each parameter, we plot the epoch reward

versus the number of epochs. Note that here we only show
results from one test case for simplicity. A similar trend can
be observed in similar test cases according to our experiments.
For ADS test cases, NPTSN takes approximately 10s per epoch.
Thus, each test case requires around 40min.

NPTSN is tested with the number of GCN layers set to
0, 2, and 4. With the default learning rates, we observe that
the neural networks without GCN (GCN-0) are unstable, i.e.,
the reward suddenly drops after a gradient update and never
converges. Hence, for GCN-0, we adjust the actor learning
rate to 1 × 10−4. The reward versus the epoch number is
shown in Fig. 5(a). The reward of GCN-0 varies between −0.25
and −0.4 after training. Instead, for GCN-2 and GCN-4, the
reward converges around −0.2, because GCN can efficiently
extract information from graph representations. According to
our experiments, adding GCN layers causes a minor impact on
performance and converging speed. In this case, both GCN-2
and GCN-4 achieve the same maximum reward of −0.17. And
GCN-4 converges after 138 epochs, which is slightly faster than
GCN-2 (epoch 149).

Fig. 5(b) shows the training process with MLP hidden size
set to 64x64, 128x128, and 256x256. Generally, larger MLP
leads to better training results because it can model more
complex features. In this case, the reward of the 256x265 MLP
converges around −0.2 while, for other setups, their rewards
float around −0.55 with large variances. It can be observed that
the size of MLP has a more significant impact on performance
than the number of GCN layers.

Fig. 5(c) shows the experiment with various parameter K
settings. Remember that K is the number of path addition
actions generated during SOAG. Intuitively, more action to be
selected indicates a larger coverage of the solution space. Thus,
K-16 leads to faster convergence and a smoother reward curve
than K-8. However, an overlarge K compromises SOAG in its
capability to prune the search space. Thus, it can be difficult
to discover good policies during exploration. Moreover, adding
long paths to the networks is usually harmful because they
involve adding more links and occupying more switch ports.
As a result, even finding feasible solutions can be difficult.
Therefore, as shown in the figure, the neural networks do not
converge when K is set to 32.
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VII. RELATED WORK

This section introduces related works focusing on three
aspects: run-time recovery of TSSDN, network planning with
reliability concerns, and machine learning tools for TSN.

Run-time recovery: recovery mechanisms are studied in
recent research to consider different network specifications
and address different concerns. The switch-driven recovery in
[14] restores flows in the real-time Ethernet with a bounded
path restoration delay. But this approach cannot be directly
applied to TSSDN where TT flows must be scheduled for TAS.
[9] presents a mechanism to recover TT flows within 100ms
against permanent failures considering the TAS scheduling
problem. The mechanism in [8] instead deals with transient
failures in TSN. [7] later proposes a recovery mechanism that
offers protection for both transient and permanent failures.
It restores replicated flow instances for FRER to maintain
seamless redundancy. [6] studies the TSN recovery problem
from a different perspective, i.e., it proposes a reconfiguration
protocol so the recovery mechanisms above can safely deploy
new configurations. All of the studies above are based on a
common assumption. They expect the network topology to
provide redundant paths so that a feasible configuration can
be found to survive failures. Our work addresses this issue.
NPTSN takes the recovery mechanism as input. It plans the
TSSDN (topology and ASIL) to offer reliability guarantees.

Network planning: network planning is a well-known NP-
hard problem to which TSSDN brings new challenges. Ap-
proaches for general network planning can be categorized
into approximated algorithms and the exact algorithm [11].
Approximated algorithms, such as CEM [12], genetic algo-
rithm [33], and dynamic programming [34], use well-developed
optimization techniques to acquire reasonably good solutions.
Instead, the exact algorithm always finds the optimal solution
and outperforms the approximated algorithms [11]. However,
general network planning approaches may compromise the
reliability of TSSDN. TSSDN requires assigning ASIL, which
is not considered for the general networks. Moreover, it requires
the flows to be scheduled for TAS during the recovery process.
Conventional networks instead deal with more relaxed latency
requirements and usually do not involve such scheduling. They
can be recovered if the topology after the failure remains
connected. Thus, a reliable topology for conventional networks
is not necessarily suitable for TSSDN.

Topology planning approaches [4], [35] have been studied for
TSN with static FRER protection. However, they are hardcoded
with techniques for static redundancy and cannot efficiently
explore the recovery capability of TSSDN to perform cost
reduction. These approaches essentially establish a pre-defined
number of redundant paths and schedule flows statically on
these paths. With FRER protection, the redundant paths can
be designed according to the ASIL decomposition rules [2].
However, for TSSDN whose flow paths dynamically changed
against failures, it leads to over-redundant networks with un-
necessary costs. Moreover, some algorithms in [4] are based on
ILP. But the dynamic recovery behaviors of TSSDN can not be
modeled using linear constraints. Our work instead deals with

the TSSDN planning problem leveraging RL tools. It allows
directly representing the complex recovery behavior and the
domain-specific requirements via the environment dynamics.

RL has recently been applied in planning optical net-
works [16]. They focus on different domain-specific constraints
such as the spectrum consumption constraint. Both NPTSN and
[16] utilize GCN and actor-critic algorithms, which are well-
developed RL frameworks for solving graph-based problems.
However, NPTSN combines the NBF-knowledge-based gener-
ation with neural network-based methods while the algorithm
in [16] only uses neural network-based generation with static
link-based actions. Thus, NPTSN performs active pruning and
is more suitable for a sparse solution space. The dynamic
actions also require novel methods to encode the actions into
the observation of the RL agent to perform stable training.

Using machine learning for TSN: machine learning has
recently demonstrated remarkable results in many fields. Here
we focus on the machine learning approaches targeting TSN.
Supervised learning has been applied to verify the TSN schedu-
lability [36]. But for the TSSDN planning problem, supervised
learning is not ideal since it requires a large data set to train
the neural networks. Obtaining such a data set for IVN is
impossible because a limited amount of IVN topologies have
been built for vehicles and they often belong to different ven-
dors. Generative Adversarial Network (GAN) [37] is another
popular generative approach. It consists of two neural networks:
a generator to produce counterfeits, and a discriminator to
distinguish the counterfeits from the real data. GAN also has
the same limitation in solving the TSSDN planning problem
due to the lack of training data. In contrast, RL can perform
automatic design space exploration and does not require a large
data set for training. RL has been widely explored in solving
combinatorial optimization problems, for which a survey can
be found in [17], and demonstrated marvelous potential. In the
field of TSN, RL is a popular approach to automate the design
of the flow configurations [38]–[40], which is proved to be an
NP-hard combinatorial optimization problem. NPTSN makes
a unique contribution as it applies RL to design the TSSDN
topology which guarantees the reliability for run-time recovery.

VIII. CONCLUSION

In this paper, we propose NPTSN that solves the TSSDN
network planning problem with RL. NPTSN aims at provid-
ing reliability guarantees for the run-time recovery behavior
while minimizing the network cost. It expresses the domain-
specific requirements of TSSDN with the RL environment and
performs an efficient design space exploration utilizing GCN.
To handle the sparse solution space and simplify the reliability
verification, we design a dynamic action space that offers
coarse-grained actions generated to survive non-recoverable
failures. To avoid invalid attempts, NPTSN generates action
masks to filter the actions. The GCN-based neural network is
trained with an actor-critic algorithm that handles the action
masks and performs gradient optimization according to the
PPO Objective. Our evaluation shows that NPTSN can provide
reliability guarantees for more test cases while significantly
reducing the network cost. The reason is that it actively prunes
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the design space and uses actions that shorten the decision
trajectory. Therefore, the probability to obtain invalid solutions
or introduce unnecessary connectivity can be reduced signifi-
cantly. NPTSN also has the advantage of approaching reliability
goals with low ASIL components, which potentially reduces
the network cost. In the future, we are interested in addressing
other functional safety aspects regarding TSN topology design,
such as protection against critical scenarios.
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[22] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[24] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region
policy optimization,” in ICML 2015, 2015, pp. 1889–1897.

[25] S. Kakade and J. Langford, “Approximately optimal approximate rein-
forcement learning,” in ICML 2002, 2002, p. 267–274.

[26] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[27] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[28] J. Achiam, “Spinning Up in Deep Reinforcement Learning,” 2018.
[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems, vol. 32, 2019.
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