
IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, 2023 1

Decentralized Configuration of TSCH-Based IoT

Networks for Distinctive QoS: A Deep

Reinforcement Learning Approach
Hamideh Hajizadeh, Majid Nabi, Member, IEEE, Kees Goossens, Member, IEEE

Abstract—The IEEE 802.15.4 Time-Slotted Channel Hopping
(TSCH) is widely used as a reliable, low-power, and low-cost
communication technology for many industrial Internet-of-Things
(IoT) networks. In many applications, Quality-of-Service (QoS)
requirements are different for heterogeneous nodes, necessitating
non-equal parameter settings per node. This results in a very
large configuration space making space exploration complex and
time-consuming. Moreover, network state and QoS requirements
may change over time. Thus, run-time configuration mechanisms
are needed for making decisions about proper node settings to
consistently satisfy diverse and dynamic QoS requirements. In
this paper, we propose a run-time decentralized self-optimization
framework based on Deep Reinforcement Learning (DRL) for
parameter configuration of a multi-hop TSCH network. DRL
adopts neural networks as approximate functions to speed up the
process of converging to QoS-satisfying configurations. Simulation
results show that our proposed framework enables the network
to use the right configuration settings according to the diverse
QoS demands of different nodes. Moreover, it is shown that the
convergence time of the learning framework is in the order of a
few minutes which is acceptable for many IoT applications.

Index Terms—IoT, IEEE 802.15.4 TSCH, WSN, DRL, QoS

I. INTRODUCTION

THE IEEE 802.15.4 [1] standard specifies Physical (PHY)

and Medium Access Control (MAC) layers of low-rate

and low-power Wireless Sensor Networks (WSNs). Time-

Slotted Channel Hopping (TSCH) as a MAC operational

mode of this standard is introduced to provide predictable

and reliable communication mainly targeting industrial appli-

cations. To achieve these objectives, TSCH uses time-slotted

access, multi-channel communications, and channel hopping

mechanisms. The TSCH protocol supports two medium access

methods using dedicated and shared timeslots. A dedicated

timeslot is exclusively assigned to a link in a neighborhood

for collision-free communication. Clear Channel Assessment

This work was supported by the SCOTT European project (www.scott-
project.eu that has received funding from the Electronic Component Systems
for European Leadership Joint Undertaking under grant agreement No737422.

The authors are with the Department of Electrical Engineering, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands. Majid Nabi
is also with the Department of Electrical and Computer Engineering, Isfahan
University of Technology, Isfahan 84156-83111, Iran (email: {h.hajizadeh,
m.nabi, k.g.w.goossens}@tue.nl).

Copyright (c) 2023 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

(CCA) may be used in dedicated timeslots to combat exter-

nal interference by preventing transmission in the dedicated

timeslot. On the other hand, a shared timeslot is allocated for

communications of multiple links, which can lead to collisions.

A CSMA/CA mechanism is used in the MAC layer to handle

contentions and repeated collisions in the shared timeslots.

TSCH CSMA/CA is fundamentally different than that of the

other MAC modes of the IEEE 802.15.4 standard (e.g., non-

beacon enabled mode) as it does not perform carrier sensing

before activating the back-off algorithm. Instead, it follows an

ALOHA-based transmission in the first shared timeslot and

performs back-off for a certain number of shared timeslots in

case of a collision. Dedicated access has had the main focus

of being used in many industrial applications since it provides

more deterministic channel access and thus more predictable

performance. However, shared access has the potential to be

employed in certain applications due to its simplicity as it

does not need a complicated scheduler like what dedicated

timeslots require. Moreover, in sparse networks or applications

with low data traffic, shared access can provide better end-to-

end latency. It is while the shared timeslots can be used in

combination with dedicated timeslots to better support a wide

range of industrial applications. In this paper, we focus on

shared timeslots and the configuration of the TSCH CSMA/CA

mechanism since its parameters have a great impact on network

performance.

There are two requirements for an effective optimization

mechanism for setting the parameters of the TSCH CSMA/CA

mechanism. First, our simulations show that a homogeneous

setting of parameters in a (part of a) network is far from

optimum. It is because of the inherent heterogeneity we typi-

cally have in the network in terms of sensing characteristics,

node’s position in the routing structure, and diverse applica-

tion Quality-of-Service (QoS) requirements. Second, network

dynamics require run-time adaptation of the MAC parameters

of individual nodes. Recent studies such as [2]–[4] present

centralized optimization techniques using performance models

to set MAC parameters and tune them at run-time. However,

in many IoT networks, it is not possible to derive a fast and

accurate enough performance model. Moreover, even if such a

performance model is available, a centralized approach is not

agile enough to sense the changes, compute new settings, and

distribute them to the nodes in a large network. We consider

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, 2023 2

multi-hop TSCH networks with a tree-based routing structure

(e.g., RPL [5]) that exploit shared timeslots for data or control

packet exchange. The contributions of this paper are as follows.

1) A decentralized optimization framework is designed for

setting the CSMA/CA parameters of each node individ-

ually based on its properties to support their diversified

characteristics and QoS requirements. In a tree-based

routing structure, the parent node at each level receives

characteristics of its nodes and sends back the proper

settings for their channel access.

2) As the optimization engine, we map the problem on a

model-free Deep Reinforcement Learning (DRL) tech-

nique. DRL is a machine learning technique that com-

bines deep learning and Reinforcement Learning (RL) to

solve complex decision-making tasks. The main reason

for this approach is the lack of accurate models for ex-

tracting the impact of the CSMA/CA parameters on high-

level QoS metrics in a multi-hop dynamic network. The

state-action space and the reward function are defined to

improve the convergence time of the technique.

3) Extensive simulations are performed to study the ef-

fectiveness of the developed scheme. The results show

that the framework can meet diverse QoS demands and

reconfigure itself quickly when the network state changes

to follow time-varying conditions.

The remainder of the paper is organized as follows. Section

II gives an overview of the TSCH CSMA/CA standard and

the Reinforcement Learning (RL) methods that are used in

this work. Section III reviews the related work on MAC

parameters setting in WSNs. The system model and problem

statement are presented in Section IV. Section V describes

our learning-based method for run-time self-configuration of

a TSCH network. The evaluation of the performance of the

proposed algorithm is presented and discussed in Section VI.

Section VII discusses the constraints of deploying our proposed

algorithms in real-world IoT devices. Section VIII concludes.

II. BACKGROUND

A. IEEE 802.15.4 TSCH CSMA/CA

TSCH CSMA/CA back-off mechanism is performed by the

nodes transmitting in the shared timeslots to avoid repeated

collisions. It is different than the original CSMA/CA technique

in IEEE 802.15.4. A node performing the TSCH CSMA/CA

transmits its data packet in the first shared timeslot (no

carrier sensing with clear channel detection). In case of not

receiving an Acknowledge (ACK) packet, a back-off procedure

is activated and the back-off parameters are initialized, i.e.,

the Back-off Exponent (BE) is set to its minimum value

(BEmin), and the number of retransmission performed by the

node is set to zero (RT = 0). Then, a random number w

is picked in the range [0, 2BE − 1]. The node waits for w

shared timeslots and then transmits its data packet unless it

reaches its dedicated timeslot, in which it can exclusively

transmit its data packet. If the (re)transmission occurs in a

shared timeslot with successfully received ACK, the algorithm

action1 action2 ….

state 1

state 2

….

state

Q-table

Environment

reward

Take action

Observe state

Agent

(a) Q-Learning algorithm representation

state
Environment

reward

Take action

Observe state

Agent DNN

Q_value(action1)

Q_value(action2)

…..

𝜃𝜃

(b) Deep Q-Learning algorithm representation

Fig. 1. General structure of Q-Learning and Deep Q-Learning algorithms

terminates. If it could not receive ACK, RT is increased by

one to count the number of transmission failures, and BE is

increased by one up to its maximum value (BEmax) to double

the size of the contention window in order to reduce the chance

of collisions. If the number of retransmissions exceeds its

maximum allowed number (maxR), the data packet is dropped.

When retransmission of the data packet succeeds in a dedicated

link, BE does not change if the transmission queue is still not

empty afterward. Otherwise, it resets to BEmin.

BEmin, BEmax, and maxR are the MAC parameters of a TSCH

node that should be configured. Each configuration parameter

has a different effect on the performance of the network in

terms of reliability, latency, and energy consumption. In this

paper, we present a self-optimization technique to configure

TSCH nodes according to their QoS demands.

B. Reinforcement Learning

This section reviews the RL concepts and techniques [6].

In an RL framework, a decision-making agent interacts with

the environment in consecutive time steps. At time step t, the

agent observes the environment state st and executes an action

at selected from the set of all possible actions A according to

a policy π, which is a mapping from states to actions. When

the agent executes action at, it receives a reward rt+1, and

the environment enters the next state st+1. There are several

RL techniques such as policy optimization methods, policy

gradient methods, and value function-based methods (e.g., Q-

learning methods) [7]. In this paper, we use the Q-learning

technique [8] and its extension, Deep Q-learning [9] for our

system model.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, 2023 3

1) Q-Learning: Q-Learning (QL) is a model-free RL algo-

rithm that aims to find the best action to execute given the cur-

rent state without knowing the policy. In this technique, given

a series of experiences et = (st, at, rt+1, st+1), the cumulative

discounted reward at t is calculated by Rt =
∑∞

k=0 γ
krt+k+1,

where γ ∈ (0, 1] is the discounted factor. For a specific policy

π, Q-value of a state-action pair (s, a) is the expected Rt and is

calculated as Qπ(s, a) = Expectation[Rt|st = s, at = a, π].
QL intends to find the optimal policy, Q∗(s, a), among all

policies so that Q∗(s, a) = maxπ Q
π(s, a). Accordingly, the

agent at time t takes action at and moves from state st to

the state st+1. It gets a reward rt+1, and then updates the Q

function as follows.

Qnew(st, at)←− (1− α)×Qold(st, at)+

α
[
rt+1 + γmax

a
Qold(st+1, a)

]
,

(1)

where α ∈ (0, 1] is the learning rate parameter. QL is

represented as a tabular format called Q-table, in which Q-

values for state-action pairs are stored in the table shown in

Fig. 1(a).

There is a well-known method in QL, called ϵ-greedy

algorithm, to choose an action at time t . In this algorithm,

the agent selects a random action from all possible actions

with probability ϵ called exploration, and the action at =
argmaxa Q(st, a) with probability 1 − ϵ called exploitation.

Enough exploration, especially in the early stages, avoids the

agent to get stuck to exploit a locally optimal policy. Hence,

the selection of the proper value for ϵ is important. It should

be set to one at early stages to explore a wide range of actions

and then decreased with a proper approach to exploit more

actions after a reasonable amount of learning steps.

2) Deep Q-Learning: Watkins et all have shown in [8]

that, in a stationary Markovian environment, the Q function

converges to the optimum Q-values with probability 1 if all

actions are repeatedly sampled in all states and the action-

values are represented discretely. However, many real-world

problems have huge state and/or action spaces, in which

convergence to the optimal policy takes a considerably long

time. If the environment changes in the meantime, the QL

algorithm never converges to Q∗(s, a). In these scenarios, the

learning information from one experience set et is generalized

to other similar new situations. To do so, function approxi-

mation methods are mainly used to approximate the Q-values

[6]. In [9], the authors proposed an algorithm called Deep Q-

Learning (DQL), in which a Deep Neural Network (DNN)

model is used to approximate the Q function for each action

value, called Q Neural Network (QNN).

Fig. 1(b) shows DQL algorithm wherein the states are

applied as inputs to the neural network. It outputs the estimated

Q-values for all possible actions, {Q(s, a; θ)|a ∈ A}, where

θ is the set of weights of the edges in the QNN. DQL

employs the same ϵ-greedy algorithm for action selection as

in QL where in the exploitation case, at = argmaxa Q(st, a)
is replaced by at = argmaxa Q(st, a; θ). To estimate the

Q-values, Q(st, at; θ), the QNN should be trained and its

parameters, θ values, should be updated by minimizing the

loss function [9]. In particular, the loss function at time step t

when the experience et is explored will be calculated as,

Loss(θ, et) =
[
Q(st, at; θ)−(rt+1+γmax

a
Q(st+1, a, θ

next))
]2
,

(2)

where Q(st, at; θ) is the predicted Q-value approximated

by the QNN and rt+1 + γmaxa Q(st+1, a, θ
next) is the tar-

get Q-value of the QNN based on the experience et =
(st, at, rt+1, st+1). Note that, QNN’s training in DQL differs

from the training of traditional neural networks in supervised

learning, where the weights of the network are tuned offline.

The QNN’s weights are updated using the last experience in

an online manner.

III. RELATED WORK

This section provides an overview of the most relevant

efforts in the literature to configuration and run-time adap-

tation of the MAC layer parameters in WSNs. Several works

have focused on centralized model-based MAC parameters’

configuration. [3] and [4] introduce platforms including an

optimization engine as the main core for the configuration

of MAC parameters at run-time to cope with network dy-

namics. The optimization engine of these platforms requires a

performance model to quickly estimate network performance

for a given configuration. Being centralized, such platforms

demand a long time to detect changes in the network, find

optimum settings for the new state of the network, and upload

them into the wireless nodes, especially in large-scale multi-

hop networks. Our earlier work [2] tries to speed up the

optimization engine for such centralized configuration schemes

using model-based approximated Pareto set to tune CSMA/CA

MAC parameters of a TSCH network. However, homogeneous

networks are considered in these frameworks in which all

nodes take equal CSMA/CA parameter settings. We show, in

this paper, that such equal settings do not work for networks

that have nodes with different packet arrival rates and/or

QoS demands. Moreover, such approaches require performance

models to estimate the performance of the network which is

not available for many real-world IoT networks, especially for

non-homogeneous networks.

RL is introduced as a model-free decision-making technique

that can be used for the intelligent configuration of wireless

networks. Through trial and error in an interactive environment,

RL agents can autonomously learn implicit knowledge of

network dynamics from raw high-dimensional observations.

[10] gives a survey on RL techniques used for WSNs in PHY,

MAC, and network layers. Since our paper focuses on learning-

based optimization and self-configuration techniques in the

MAC layer, we limit our review to the same area.

[11] is the most relevant work. It first analyzes the per-

formance of the dynamic back-off parameter (BE) setting in

the base CSMA/CA of IEEE 802.15.4 and verifies the essence

of dynamic configuration according to the traffic rate. A QL

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, 2023 4

algorithm is proposed to configure the control and networking

subsystems. Although it considers equal settings (BE value)

for all nodes and ignores heterogeneity making state-action

space with a reasonable size to explore, it still suffers from a

low convergence speed of the learning algorithm. With a large

number of state-action pairs, the convergence speed of QL will

be an issue since each state-action value must be explored at

least once. To tackle this problem, [11] suggests two priority-

aware policies to improve the convergence speed. The first

policy is to reduce the number of states from a complete set to

a limited set by grouping some states together and representing

them as one state. The second policy is to assign a limited

number of actions per state according to the knowledge of the

traffic in the network, which needs prior experiments. However,

for a very large number of state-action spaces with dynamic

environments, the problem still remains in place. In our work,

we consider the CSMA/CA algorithm of the TSCH mode,

which is fundamentally different than the base mechanism.

Moreover, we consider individually setting of nodes to support

heterogeneous specifications and QoS requirements of various

nodes. It leads to a substantially larger state-action space for

which the QL-based solution proposed in [11] will not be a

feasible approach.

Recent advances in deep learning open a new area for RL

called DRL. Deep Q-Network (DQN) [10] is a representative of

DRL, which embraces the advantage of DNN in approximating

the value functions, and hence speeding up the learning process

and improving the RL performance for environments with large

states/actions. [12] presents a survey on the applications of

DRL in QoS provisioning at the MAC layer including medium

access and data rate control, resource sharing, and scheduling.

They highlighted the main advantages of DRL-based methods

compared to traditional methods for various problems.

[13]–[15] are some efforts utilizing the DRL mechanism

for MAC parameter configuration in WSNs. In [13], the

authors present a DQN-based mechanism on a transmission

and back-off approach that consists of two sub-networks. The

first sub-network is a DQN for the configuration of the time

scheduler in order to transmit more low-priority packets while

not affecting the performance of high-priority packets. The

second sub-network which is also a DQN derives optimal back-

off length by using the action of the first sub-network and

channel occupancy. Simulation results prove the effectiveness

of the proposed DQN-based approach under different traffic

loads. [14] utilizes DRL to adjust the length of the initial

back-off window during the back-off process to increase the

uplink throughput and reduce the energy outage probability. It

is shown that this method improves throughput compared to

traditional techniques. In [13] and [14], homogeneous nodes

are considered regardless of the fact that in real-world applica-

tions, WSNs may need to support heterogeneous nodes. [15]

presents an inner-state-driven random access framework for

wireless networks with heterogeneous nodes having diversified

QoS requirements. They use policy optimization methods for

the configuration of the time scheduler which schedules the

0

1 2

4

8

5

9

76

Sink

3
Air pressure

sensor

Engine oil
temperature

sensor
Engine oil
pressure
sensor

Parent node

Sub-tree

Fig. 2. An illustration of the system model showing diversified QoS require-
ments in a TSCH network.

transmission opportunities among nodes by mapping the inner

states of each node to a transmission probability. Neural net-

works are adopted as approximation function mapping nodes’

inner states to actions. Experimental results show that, in a

simplified case with 3 heterogeneous nodes, the QoS of all

nodes can be improved simultaneously by their framework

compared to the conventional approaches which use equal

transmission probability for all nodes.

This paper is the first attempt to provide a model-free

decentralized run-time self-configuration platform for TSCH

CSMA/CA supporting heterogeneous nodes with diverse and

dynamic QoS requirements running in a tree-based multi-hop

network.

IV. SYSTEM MODEL AND PROBLEM STATEMENT

A. System model

A converge-cast WSN is considered in which each node

intends to send its data packets to a sink node. Each node runs

the TSCH standard as the MAC layer and a single-parent tree

routing mechanism such as RPL [5] as its multi-hop routing

protocol. Fig. 2 shows an example of such a network as a

motivating control application deployed in a vehicle, wherein

different sensors have to monitor environmental parameters and

continuously transmit their data to the sink node through a

routing path. According to the sensor’s type, the network must

support differentiated QoS. Data packets arrive at the MAC

layer of nodes from their own sensor or from the nodes in their

sub-tree; such packets are aggregated and then transmitted to

the parent node in each sub-tree. It is assumed that all nodes

in the same sub-tree use only shared timeslots for transmission

of their data to their parent, like the mechanism used in the

widely-used Orchestra scheduler [16] in the receiver-based

mode. The configuration of each node in a sub-tree affects the

performance of other nodes in the same sub-tree since they

compete with each other in the shared links to deliver their

data to their parent.

The packet arrival rates of the nodes and their patterns

(periodic or event-based) may be different and time-variant.

A very common packet management scheme is considered, in

which older packets are dropped whenever a newer version of

the packet arrives. To avoid high signaling overhead and have

an acceptable response time, the decentralized configuration

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, 2023 5

of TSCH parameters is the problem of interest. The parent

node in each sub-tree receives control packets from its children

about their data traffic specification and the QoS requirements.

It then extracts appropriate settings of the TSCH CSMA/CA

parameters of all the nodes in the sub-tree and broadcasts

them to its children. This makes the problem decentralized

at the network level and centralized at the sub-tree level.

While a parent node makes decisions about the settings of

its children based on the specifications it locally receives

from them, such information has been gradually made in

the whole hierarchy of the tree-based routing structure. The

specifications and requirements are developed by the children

nodes based on their own sub-tree. The nodes aggregate their

own specifications with those of their sub-tree and then send

them to their parents.

By the aforementioned configuration strategy, the problem

is narrowed down to the configuration of the nodes within

a sub-tree by the parent node. Consider a sub-tree with N

nodes connected to a parent node indicated by n1, n2, ..., nN .

Each node may have a number of configuration parameters

and the sub-tree as a whole has p configuration parameters.

Pk indicates the set of all values that k-th parameter can

get (1 ≤ k ≤ p). Also, a number of performance metrics

may be defined for each node independently; QoSi indicates

a QoS metric for node ni. Configuration space of such sub-

tree is then the set of all possible configurations, which is

the Cartesian product of finite configuration parameters, as

C = P1×P2×...×Pp. c = (c1, c2, ..., cp) is an element of such

a configuration space which leads to QoSi(c) for 1 ≤ i ≤ N

and any QoS defined for node ni. Let Qobj and Qcnt be the

subsets of the set of all QoS metrics considered as objectives

and constraints, respectively. Note that QoS metrics of node

ni are affected by the configuration of all nodes in the sub-

tree, not only by its own settings. The optimization problem

is stated in a generic form as follows.

optimise
c∈C

QoS(c) ∀ QoS ∈ Qobj

s.t. QoSj(c) ⪰ QoS
req
j ∀ QoSj ∈ Qcnt

, (3)

where the QoS metrics in Qobj have to be optimized as

objectives, and for every QoS metrics QoSj in Qcnt, its

corresponding constraint, QoS
req
j , needs to be met. Notation

⪰ represents better performance, which may be a lower or

higher value depending on the nature of the metric.

Since the network may be heterogeneous, different nodes

may have different conflicting objectives. Therefore, if each

wireless node in a sub-tree tries to optimize its performance

according to (3), the problem will become a Multi-Agent (MA)

stochastic game with competing players [17]. It results in a

non-stationary environment leading to divergence in finding an

optimal solution for the network (sub-tree). To avoid this prob-

lem and achieve convergence, we first develop team objectives

instead of individual optimization goals. (4) gives the overall

team objectives as a linear weighted sum of all objectives.

QoS(c) =
∑

QoS∈Qobj

ωQoS × Q̂oS(c), (4)

where Q̂oS(c) is the normalized value of the QoS metric in Qobj

and ωQoS is its weight. Consequently, the optimization problem

will be as follows.

optimise
c∈C

QoS(c)

s.t. QoSj(c) ⪰ QoS
req
j ∀ QoSj ∈ Qcnt

, (5)

where QoS(c) is the overall performance to be optimized. To

solve this optimization problem, the wireless nodes within a

sub-tree need to collaborate to optimize the developed team

objectives. For this, the nodes need to constantly exchange

control packets to inform one another about their actions and

the outcomes. To avoid this overhead, we convert the MA

problem to a single-agent by making the parent node in a sub-

tree a single-agent decision maker, solving the optimization

scenario in (5), and informing the nodes about the action they

must take.

In the rest of this paper, as an example and without loss

of generality, we assume three common performance metrics

as reliability, latency, and energy consumption for each node.

From the application’s point of view, it is the end-to-end

performance metrics that should be considered. However, the

end-to-end performance metrics can be derived by combining

the single hop level performance metrics [2]. Thus, we consider

three QoS metrics in the single hop level as Packet Loss Ratio

(PLR), Latency (L), and Energy consumption (E) which are

defined for a typical node ni as follows. These metrics are

calculated in a predefined time episode.

PLRi is the number of arrived packets at node ni that are

failed to be delivered to the parent node over the total number

of ni’s arrived packets during the time episode. Note that ni’s

arrived packets can be the generated packets by ni or the

packets it receives from its children to forward to the parent

node. The failed packets are counted regardless of whether the

packets are transmitted (they may be transmitted but failed to

be delivered to the receiver or may be discarded due to the

arrival of newer packets).

Li is defined as the time between the packet arrival at ni and

its delivery to the parent node. It is averaged over all delivered

packets from ni during the time episode. Note that latency is

calculated only for data packets that are successfully delivered

to the parent node.

Ei is the average energy consumed by ni to transmit a packet

to the parent node and receive its ACK during the time episode.

Generally, the energy consumption (E) of a node during a

time episode is a function of the node’s activities such as

transmitting, receiving, switching between radio modes, and

being in sleep mode in all timeslots in that time episode. In

this work, we use the energy model described by (6), w.l.o.g

ignoring the details such as energy consumed during mode

switches or the sleep periods.

E = Es × TxNs + Ef × TxNf (6)

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, 2023 6

In (6), Es is the energy consumption of a node for transmit-

ting a packet successfully (sending the packet and receiving

its ACK), while Ef is the energy consumption of the node

when it transmits a packet but fails to receive the ACK

packet. TxNs and TxNf are the number of successful and failed

transmissions, respectively. Clearly, TxNs = 1, while TxNf

depends on the maxR value. Es and Ef are computed by

Es = PTX × TTX + PRX × TACK , (7)

Ef = PTX × TTX + PRX × Tto , (8)

where PTX and PRX are the radio power consumption of the

node in transmitting and receiving states, respectively. TTX ,

and TACK are the time durations of data packet transmission

and receiving the ACK. In case the ACK packet is not sent

by the receiver or it is lost, the standard specifies a time-

out (Tto) until which the transmitter node continues listening

to the channel for the ACK. Afterward, the data packet

transmission is considered a failure by the transmitter, and the

retransmission process is initiated. According to the standard,

Tto ≃ TACK . Thus, Es ≃ Ef , and E = Es × TxN, where

TxN = TxNs + TxNf .

Accordingly, Ei depends on the number of transmissions

denoted by TxNi and the power consumption profile of the

node. In the rest of this paper, we use TxNi as a representation

of Ei in the MAC layer.

As stated in (4), the normalized values of these metrics are

used.

B. Need for dynamic and non-equal settings

In many CSMA/CA configuration schemes for TSCH net-

works, static and equal configurations are set for all nodes

as BEmin,BEmax, and maxR. In the following, we show that

this approach results in CSMA/CA settings that are far from

optimal for heterogeneous nodes with diverse QoS require-

ments in dynamic environments. Here, we use a simple sub-

tree including only two nodes (n1 and n2) running TSCH

CSMA/CA. The packet arrival periods are 200ms and 250ms

for n1 and n2, respectively. By incident, their first transmis-

sions start at the same timeslot so they experience collisions.

Let energy consumption of both nodes have to be optimized

subject to constraints on PLR of n1 (PLR1), and L of n2 (L2)

as PLR1 ≤ 0.1 , and L2 ≤ 100ms.

From (4) and (5), we have

minimise
c

QoS(c) = T̂xN1 + T̂ xN2

s.t. PLR1(c) ≤ 0.1
s.t. L2(c) ≤ 100ms

(9)

For simplicity of showing results, it is assumed that BEmin
i =

BEmax
i = BEi for node ni. Through Monte-Carlo simulations,

the performance of the nodes for different values of BE1 and

BE2 is derived. Fig. 3(a) shows QoS defined in (9) versus BE1

and BE2, wherein QoS values are reported per [BE1, BE2]. For

values of BE1 and BE2 that the constraints are not satisfied,

the box is in purple color, and QoS values are not reported.

0 1 2 3 4 5 6
BE1

0
1

2
3

4
5

6
BE

2

0.15 0.11 0.081 0.078 0.078

0.13 0.13 0.096 0.081 0.078 0.078

0.087 0.11 0.096 0.081 0.081 0.084

0.078 0.096 0.078 0.087 0.078

0.081 0.081 0.078 0.078 0.075 0.081

0.081 0.078 0.087 0.081 0.081 0.075

0.075 0.078 0.072 0.078 0.075 0.078

QoS= TxN1+ TxN2

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

(a) QoS vs BE1 and BE2 when packet arrival periods are
200ms and 250ms for n1 and n2, respectively

0 1 2 3 4 5 6
BE1

0
1

2
3

4
5

6
BE

2

0.13 0.1 0.07 0.073

0.14 0.14 0.082 0.073

0.086 0.08 0.092 0.076 0.069

0.077 0.082 0.088 0.074 0.066

0.072 0.085 0.076 0.072 0.073

0.072 0.069 0.07 0.073 0.062

0.066 0.069 0.069 0.069 0.067

QoS= TxN1+ TxN2

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

(b) QoS vs BE1 and BE2 when packet arrival periods are
100ms and 120ms for n1 and n2, respectively

Fig. 3. Overall performance (QoS) versus configuration settings showing
unsuitability of equal and static settings for dynamic heterogeneous networks.

Equal configuration settings (BE1 = BE2) for heterogeneous

nodes are not the optimal solution. The optimum configuration

settings are BE1 = 2 and BE2 = 6. As another case, the

traffic load in the network is increased by setting the packet

arrival period of n1 and n2 to 100ms and 120ms, respectively.

Observing the results in Fig. 3(b), it is shown that the network

gets far from the optimal behavior, and optimal configuration

settings change as BE1 = 4 and BE2 = 5. Consequently, a self-

optimization framework has to be designed to provide adaptive

and per-node CSMA/CA configuration settings to guarantee

distinctive QoS.

V. LEARNING-BASED TSCH CSMA/CA CONFIGURATION

To approach the problem, we first choose QL as a represen-

tative model-free RL algorithm, since it conducts systematic

trial and error in the unknown environments that are too

complex to build a model. To implement QL, agent, state,

action, and reward functions are defined for our problem. Then,

the convergence time of QL algorithm as a limiting factor

for the networks with large configuration space is discussed.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, 2023 7

Neural networks are leveraged in QL algorithm to accelerate

the convergence in order to overcome the limiting factor. To

realize this, DQN framework is presented which keeps the

same definition of state, action, and reward functions in QL,

while employing neural networks to approximate Q-values.

A. QL-based TSCH CSMA/CA configuration

Here, we first define QL elements as an agent, states,

actions, and a reward function to create a QL model for the

configuration of TSCH CSMA/CA parameters according to

QoS demands. The state st is an element of configuration space

C including all nodes’ configuration settings. The action at is

the step size of adjusting each configuration parameter, which

can be ±1 or zero. A parent node as an agent implements

QL algorithm to select an appropriate CSMA/CA configu-

ration based on experience gained from agent-environment

interactions. The proposed QL-based MAC protocol features

a QL-based scheme that adaptively regulates the configuration

settings to maximize the overall performance according to the

defined constraints and objectives. Having Qobj and Qcnt, the

reward is defined as,

rt+1 =





−3×N ∃i | PLRi > PLRdis

−
∑
|Q̂oSj(c)− Q̂oS

req

j | ∀j| QoSj ∈ Qcnt &

QoSj(c) ≺ QoS
req
j

1
QoS(c)

otherwise

,

(10)

where N is the number of nodes connected to the parent node.

Our most important goal is to configure CSMA/CA parameters

in a way so that all nodes have the opportunity to deliver their

packets to the parent node, meaning that the scheme is expected

to go for settings that avoid very high PLR values. If data

packets of a node fail to reach the parent node, other QoS

metrics such as latency cannot be truly measured. If any of

the nodes gets stuck in a severe situation (disconnection) and

cannot deliver its data packets to its parent node (PLR ≈ 1),

the agent will be harshly punished and gets the largest negative

reward. Here, such a severe situation is translated as PLR >

PLRdis, where PLRdis is the threshold of PLR after which the

link is considered disconnected. If this is not the case, then the

agent checks whether all constraints are satisfied. If some of

the constraints are not met, the agent is punished by a negative

reward which is the sum of the gap between the normalized

QoS values and their corresponding requirements. As stated

in Sec. IV-A, we assume three QoS metrics to evaluate the

performance in a sub-tree. So, the largest possible negative

reward is −3 × N . If none of the first two cases holds, the

inverse of the overall performance is considered as a positive

reward.

Target QNN



Main QNN



…
..

…
..

Agent

…
..

…
..

Agent Gradient descent

Select
action

RL Agent

Mini‐batch E

After Z steps update
=

Update

Memory M

Fig. 4. The structure of the developed DQN framework

B. DQN Framework for TSCH CSMA/CA configuration

By increasing the number of nodes and/or configuration

settings per node, the state-action space expands exponentially.

To get a rough idea, suppose a sub-tree with only three nodes

whose three CSMA/CA parameters per node have to be con-

figured, resulting in 9 configuration parameters. There are 312

possible configurations per node [2] resulting in approximately

3123×39 ≈ 6×1011 state-action pairs. Each state-action value

must be explored at least once for convergence to the optimal

solution. If each time step duration is 100ms for exploration,

the convergence of RL takes more than one year. Therefore,

when a problem has a large state-action space we can no longer

represent QL as an efficient solution. Instead of using a large

table to represent Q, we can approximate the state-action value

function using explored experience as a ground truth.

Loss(θ, E) =
1

|E|
×

∑

et∈E

[
Q(st, at; θ)

− (rt+1 + γmax
a

Q(st+1, a, θ
next))

]2
(11)

Therefore, we present DQN which adopts QNN as the

approximation function for mapping states to actions in order

to improve the convergence speed significantly. In QNN, when

the parameters of the neural network are updated based on the

explored experience in one state, the Q estimates for other

similar states are changed too. Therefore, parameterization

facilitates the generalization of the experience. We first started

with the original DQN algorithm described in Section II-B2.

However, it showed divergent behavior on several scenarios.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, 2023 8

It is a well-known instability problem in DQN which has two

causes [9]. First, a single experience is used in the algorithm

to calculate loss function (2), leading to instability. Second,

one QNN is utilized to approximate both predicted and the

ground truth Q-values making high bias. To stabilize the DQL

algorithm, we modify the original DQN by applying two

key ideas [9]. First, instead of training QNN with a single

experience at time t (et), multiple experiences are pooled

together and stored in memory M for batch training. A mini-

batch denoted by E including |E| random experiences is

chosen from M to compute the loss function for a round of

training. Thus, Mean Square Error (MSE) is employed as a

loss function instead of (2) as follows [18].

The second idea is the use of two different QNNs called

“target QNN” and “main QNN”. The structure of them are the

same, but the parameters are different, in which the parameters

of the main QNN (θ) are up-to-date, while those of the target

QNN (θnext) are older. After Z steps, the parameters of the

target QNN will be replaced by that of the main QNN. In the

computation of loss function in (11), target QNN approximates

Q(st+1, a, θ
next). Then, rt+1+γmaxa Q(st+1, a, θ

next) is used

as ground truth for Q-values, while main QNN approximates

Q(st, at; θ) that is used as predicted Q-values.

Fig. 4 shows our DQN framework structure whose process is

described in Algorithm 1. It is implemented in the parent node

as an RL agent. The algorithm starts with the initialization of

the environment, first-time step, initial state, and other learning

parameters. The memory is empty at the beginning and is filled

with explored experiences over time in a FIFO manner. Then

the parent node gets the specifications of the nodes including

their packet arrival period, QoS objectives, and their constraints

(line 4). This is done by receiving control packets including

this information from its children. In line 5, the parameters of

the learning machine are set to their initial values. Afterward,

there is a while loop that iterates over time steps while the

node’s specification and QoS requirements do not change.

We utilize ϵ−greedy policy as the behavior strategy to

explore and exploit in action selection with ϵ gradually de-

creasing by rate ϵdec from 1 to ϵmin. The agent executes the

selected action and enters the next state st+1 in line 12 which

determines new configuration settings. The agent broadcasts it

to the nodes and waits till the end of the time step to evaluate

the QoS of all nodes in lines 13-14. The reward function is

calculated by the agent from (10) in line 15, and experience

et = (st, at, rt+1, st+1) obtained from the interaction between

the agent and the environment at time step t is stored in M as

stated in line 16. When at least |E| experience is added to the

experience memory M (line 17), training the QNNs starts by

selecting the mini-batch E randomly from M and feeding it

to the two QNNs (lines 18-20). Then the approximated values

out of the main QNN and the target QNN are used to compute

loss function in line 21. The loss function is minimized in

gradient descent operation with a learning rate of β [18] to

update θ values. The θ values of the target QNN are updated

to the latest θ parameters of the main QNN after Z time steps

Algorithm 1: DQN algorithm

1 Initialise the environment, time step t← 1, get initial state s1
2 Initialise parameters θ randomly, and set θnext ←− θ
3 Initialise M , E, and Z
4 Get nodes’ Spec., Qobj, and Qcnt

5 Initialise β, ϵmin, ϵdec, γ, and set ϵ← 1
6 M ← ∅ /* Memory is empty at the beginning */

7 while (!Changed(Spec., Qobj, Qcnt)) do
8 if random < ϵ then
9 at ← random(A) /* exploration */

10 else
11 at ← argmaxa Q(st, a; θ) /* exploitation */

12 st+1 ←Execute(at) /* distribute new config. to

nodes */

13 Wait for one time step
14 EvaluateQoS()
15 rt+1 ← RewardFunction() /* using (10) */

/* store the experience et in M */

16 M.append(st, at, rt+1, st+1)
17 if |M | ≥ |E| then

/* select a mini-batch of size |E| from M */

18 E ← RandomSelect(M)
/* approximate Q(s, a, θ) */

19 Q(st, at, θ)← Main QNN.forward
/* approximate Q(s, a, θnext) */

20 Q(st+1, at, θ
next)← Target QNN.forward

21 Loss← LossFunction() /* using (11) */

22 θ ← GradientDescent(Loss, β)
/* decrease epsilon */

23 ϵ← max(ϵ− ϵdec, ϵmin)

24 st ← st+1

25 t← t+ 1
26 if t % Z=0 then
27 θnext ← θ

28 if MajorChange then
29 Go to line 1

30 else
31 ϵ, ϵdec, |E| ← UpdateExplorationScheme()
32 Go to line 6

in lines 26-27.

The parent node always keeps track of new control infor-

mation it receives from its nodes. Once it detects a change in

the nodes’ specification or QoS demands, it reacts by altering

the usual procedure of the learning process. In Algorithm

1, the main loop breaks when such changes are detected.

Note that it is very inefficient and loss of experience if the

trained QNNs are reset after any change in the sub-tree. If

the change is not major, the already trained networks can be

used as a base and get new training by exploring the new

situation. Our experiments show that it hugely speeds up the

convergence of the algorithm upon changes leading to the

higher reactivity of the mechanism. Thus, what the parent

node does is evaluating the observed change and adapting the

learning process accordingly. If the change is minor such as a

change in the QoS constraints of a node, it is accommodated

by resetting the exploration parameters namely ϵ, ϵdec, |E|,
flushing the experience memory (M) and continuing with the

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, 2023 9

already trained QNNs. Going to line 6, the algorithm flushes

M , and then starts to learn again using new explorations. If the

change is detected as a major change such as a node joining or

leaving, a different state-action space is resulted for which the

input and output layers of QNN need to be changed. Thus, the

agent needs to reset everything and executes from the scratch

(line l).

VI. PERFORMANCE EVALUATION

In this section, we discuss experiments performed to evaluate

the performance of our proposed DQN framework as a run-

time self-configuration platform in a TSCH network. The

convergence time of the configuration mechanism to derive

QoS-satisfying configurations is an important factor. Also,

we aim at investigating the performance of the mechanisms

upon state changes at run-time, and checking whether the

network can reconfigure itself quickly to satisfy diverse and

dynamic QoS consistently. QL and pure CSMA/CA with equal

CSMA/CA settings are implemented and tested; their QoS

results are compared with the DQN framework.

We adopt a neural network with two hidden layers, wherein

the number of neurons for the first and the second layers is

30 and 10, respectively. The activation function is ReLU [18],

and MSE in (11) is used as the loss function in the gradient

descent method with β = 0.05. The value of ϵ in the ϵ-greedy

algorithm is initially set to 1 and is decreased at a rate of

0.005 (ϵdec = 0.005) every time step until its value reaches

0.01 (ϵmin = 0.01) . The discount factor, γ is set to 0.99. The

size of the experience memory, M is set to 800, the mini-

batch size is set to |E| = 80, and the target QNN is updated

every 50 training steps (Z = 50). Each training step should be

long enough to observe the performance of packet delivery of

all nodes. We consider one second as the length of a training

step including 100 shared timeslots (timeslot length is 10 ms).

After each training step, the parent node calculates the reward

and broadcasts new configuration settings to all children nodes.

The disconnection threshold for PLR in the reward function is

set to PLRdis = 0.97 in all the simulations. In all setups, it

is assumed that the wireless links in the PHY layer are ideal

with a packet reception ratio of 100%. It means that if there

is no collision in accessing a shared timeslot, the packet is

assumed to be received by the parent node successfully. This

assumption is made in the performance evaluations to isolate

the results from the impact of channel deficiencies.

We first consider a network including three nodes trans-

mitting their data to the parent node. It is assumed that n1,

n2, and n3 have a packet to send to the parent node every

50, 70, and 130ms. n1, n2, and n3 have to minimize their

PLR, latency (L), and energy consumption (TxN), respectively,

subject to PLRi ≤ 0.3 for 1 ≤ i ≤ 3. In other words,

Qobj = {PLR1, L2, TxN3} and Qcnt = {PLR1,PLR2,PLR3}.
In this setup, we set BEmin = BEmax = BE, in which

BE can vary in range [0, 7], and maxR = 7 for all nodes.

Accordingly, the parent node runs DQN to tune BE1, BE2,

and BE3 after any change to optimise the overall performance

as P̂LR1 + L̂2 + T̂xN3.

To investigate the adaptability of our DQN framework to

the changes in the network, we change nodes’ packet arrival

periods after 10 minutes and 20 minutes. After the first 10

minutes, the packet arrival period of the nodes n1 and n3

changes to 150 and 90ms, respectively. Then packet arrival

period of n3 changes after the second 10 minutes to 270ms.

Since these changes are not considered as major changes,

we update the exploration scheme by setting of ϵ = 0.7,

ϵdec = 0.01, and |E| = 60 after the nodes’ packet arrival

period changes. Thus, we tested the cases in which we reset ϵ

to its initial value of one. However, the convergence speed is

higher when we use a lower value (0.7 in our implementation

with a higher decrease rate and smaller mini-batch).

Fig. 5(a) compares the overall performance of our proposed

DQN framework during the described 30 minutes of network

conditions with the overall performance of pure CSMA/CA by

which all nodes get equal configuration settings (BE = 1, 3, 5,
and 7). The main observation is that the overall performance

achieved by the DQN framework converges to the best-

achieved results in several minutes. In dynamic IoT systems,

this time is reasonably accepted. Fig. 5(b) shows selected

values of BE1, BE2, and BE3 versus the training step. It is

observed that the selected configuration settings when DQN

framework converges are different for the nodes, and it changes

when the network state changes over time. The network can

react to the changes in the traffic load generated by the nodes

quickly (around 3 minutes), and reconfigure the nodes to the

new configuration settings.

Constraint performance metrics are shown in Fig. 5(c).

It is observed that they satisfy their corresponding require-

ments (PLRi ≤ 0.3) in the convergence zone. Note that the

probability of exploration is 0.01 in the convergence zone,

consequently, the agent may still select a random action with

a probability of 0.01. It makes the network a little far off near-

optimal values which are visible in Fig. 5.

To investigate the strength of DQN compared to QL in

terms of converging, we implemented QL for the same setup

and runs the QL for the first 10 minutes when the packet

arrival period are 50, 70, and 130ms. Fig. 6 shows the overall

performance as P̂LR1 + L̂2 + T̂xN3 when the agent runs QL

with the same learning parameters used in DQN. As shown,

QL cannot converge to the results achieved by DQN at the

same exploration time. It is intuitively expected since QL has

to explore all state-action pairs or it cannot converge to an

optimal policy. Instead, DQN does not need to explore all state-

action pairs since it approximates state-action values using the

explored state-action pairs.

In the second setup, a new node with a packet arrival period

of 170ms (n4) joins the network in the previous setup when

the packet arrival periods of the existing nodes are 150, 70, and

270ms. It is assumed that latency of n4 is also to be minimized.

Thus, L4 is added to the objectives set, Qobj. Accordingly, the

parent node detects a major change and resets the Algorithm to

start learning from scratch. Fig. 7 gives the results for this setup

showing that the network can recover itself in a few minutes,

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, 2023 10

0 200 400 600 800 1000 1200 1400 1600
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ep
si
lo
n

Epsilon

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ov
er

al
l P

er
fo

rm
an

ce

BE=1
BE=3
BE=5
BE=7
DQN

10

5

0

5

10

15

20

Re
w
ar
d

Reward

(a) Comparison between the overall performance when using DQN with pure CSMA/CA

0 200 400 600 800 1000 1200 1400 1600
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ep
sil

on

Epsilon

0

1

2

3

4

5

6

7

BE

BE1
BE2
BE3

(b) BE values of the nodes when using DQN

0 200 400 600 800 1000 1200 1400 1600
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ep
sil

on

Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 m

et
ric

s

PLR1

PLR2

PLR3

(c) Constraint performance metrics when using DQN

Fig. 5. The results of the network including three nodes with packet arrival periods as 50, 70, 130ms, which changes to 150, 70, 90ms after 10 minutes, and
then changes to 150, 70, and 270ms after 20 minutes, when Qobj = {PLR1, L2, TxN3} and Qcnt = {PLR1,PLR2,PLR3} using DQN and pure CSMA/CA

0 100 200 300 400 500 600
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ep
si
lo
n

Epsilon

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ov
er

al
l P

er
fo

rm
an

ce

QL

10

5

0

5

10

15

20

Re
w
ar
d

Reward

Fig. 6. Overall performance of the network including three nodes with packet
arrival periods as 50, 70, 130ms when Qobj = {PLR1, L2, TxN3} and Qcnt =

{PLR1,PLR2,PLR3} using QL

and it converges to the QoS-satisfying configurations. Fig. 7(a)

presents the overall performance, P̂LR1 + L̂2 + T̂xN3 + L̂4.

It is observed that the network has converged to its final

configuration after around 350 learning steps (seconds). Also,

the observed overshoots around learning step 500 are random

explorations that RL performs. Fig. 7(b) shows the individual

performance objectives behavior. Fig. 7(c) confirms that all

constraints are met meaning that PLRi ≤ 0.3 for i = 1, 2, 3.

Moreover, Fig. 7(d) shows how a suitable value is assigned

to BE4 for the new joined node in a way that the overall

performance is minimized and the constraints are met.

In the last setup, we use the first setup including three nodes

when the packet arrival periods are 50, 70, and 130ms. The

same objective performance metrics are considered with no

constraints. Thus, Qobj = {PLR1, L2, TxN3} and Qcnt = ∅.

The assumptions in the first setup as BEmin = BEmax and

maxR = 7 are released. Configuration parameters, BEmin
i ,

BEmax
i , and maxRi can get any value in the range [1,7]. In-

creasing the number of configuration settings makes the state-

action space larger resulting in complex QNN. Fig. 8 shows

the overall performance for this setup. Here, we implement

pure CSMA/CA with four typical value sets for [BEmin, BEmax,

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, 2023 11

0 100 200 300 400 500 600
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0
Ep

sil
on

Epsilon

0.1

0.2

0.3

0.4

0.5

Ov
er

al
l P

er
fo

rm
an

ce BE=1
BE=3
BE=5
BE=7
DQN

(a) Comparison between the overall performance when using DQN with
pure CSMA/CA

0 100 200 300 400 500 600
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ep
sil

on

Epsilon

0.00

0.05

0.10

0.15

0.20

0.25

Pe
rfo

rm
an

ce
 m

at
ric

s

PLR1

L2

TxN3

L4

(b) Objective performance metrics when using DQN

0 100 200 300 400 500 600
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ep
sil

on

Epsilon

0.00

0.05

0.10

0.15

0.20

0.25

Pe
rfo

rm
an

ce
 m

et
ric

s

PLR1

PLR2

PLR3

(c) Constraint performance metrics when using DQN

0 100 200 300 400 500 600
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ep
sil

on

Epsilon

0

1

2

3

4

5

6

7

BE

BE1
BE2
BE3
BE4

(d) BE values of the nodes when using DQN

Fig. 7. The results of the network including four nodes with packet arrival
periods as 150, 70, 270, 170ms when Qobj = {PLR1, L2, TxN3, L4} and
Qcnt = {PLR1,PLR2,PLR3} using DQN and pure CSMA/CA

maxR] which are stated in Fig. 8. As shown, our DQN can

converge to the best setting in several minutes compared to

pure CSMA/CA. This is while, the configuration parameters

are increased to 9 parameters resulting in a huge configuration

space, and making complex neural networks with many inputs

and outputs.

Comparing the results for all setups reveals the effectiveness

of our DQN framework in selecting the right TSCH CSMA/CA

settings from a very large configuration space to meet diverse

and dynamic QoS requirements at run-time. Moreover, it can

recover itself and reconfigure the parameters of the nodes in a

0 100 200 300 400 500 600
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ep
sil

on

Epsilon

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ov
er

al
l P

er
fo

rm
an

ce [1 3 4]
[3 5 4]
[5 7 4]
[7 8 4]
DQN

Fig. 8. Overall performance of the network including three nodes with packet
arrival periods as 50, 70, 130ms and 9 configuration parameters when Qobj =

{PLR1, L2, TxN3} and no constraint using DQN and pure CSMA/CA

reasonable time when the network status changes.

VII. RUNNING DRL ON IOT EMBEDDED DEVICES

Running DRL algorithms on IoT devices requires storing

some parameters and performing arithmetic operations to train

the Neural Networks (NNs) and process the data generated

by the IoT devices. For a NN with n hidden layers, and

specifications of i, {hk}, and o, indicating the number of

neurons in the input layer, hidden layer k-th (k = 1, .., n),
and output layer, respectively, the total number of trainable

parameters (|θ|NN) is given by (12).

|θ|NN = i× h1 +
n−1∑

k=1

hk × hk+1 + hn × o+
n∑

k=1

hk + o (12)

Moreover, the number of floating point multiplications

(MLPNN) in its operation is calculated as follows.

MLPNN = i× h1 +

n−1∑

k=1

hk × hk+1 + hn × o (13)

To have a rough estimation of the computation and memory

load of the algorithms, consider a DRL setup running on a

TSCH network in Section VI, including two NNs (the main and

target). The configuration settings are the inputs, and there are

three actions per configuration setting. Thus, i = 3× 3 (three

nodes and three configuration parameters per node), o = 3× i,

h1 = 30, and h2 = 10. Then, the number of NN parameters to

store for both NNs is 1814. To store only trainable parameters

as single precision floating points, 8KB of memory capacity

is needed. Also, it performs 1680 floating points multiplica-

tions, ignoring any multiplications that are associated with the

activation function, reward function, etc. This leads to a rather

high computation time (> 10ms) and a borderline memory

using the general purpose embedded processors on typical IoT

devices. Thus, running DRL algorithms on resource-limited

IoT embedded devices is still a challenge for the research and

industrial communities.

Recently, new research is being conducted to develop new

approaches to tackle this issue and implement DRL algorithms

on resource-constrained IoT devices [19]. On the one hand,

efforts are put forth in developing next-generation embedded

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, 2023 12

processors capable of running efficient machine learning algo-

rithms to be used for IoT edge devices. On the other hand,

NN model optimizations are being explored (e.g., structure

compression and quantization) in order to to reduce the load

of deep learning-based techniques for embedded devices. An

interesting example is ”Tiny ML / Tensorflow Lite” [20], which

runs machine learning at the core of IoT devices operating at

low and ultra-low power.

Although running DRL algorithms presented in this work

may be challenging for currently commercially available IoT

nodes due to their limitation mainly in terms of floating-

point computation power, it is highly anticipated that machine

learning-capable embedded processors soon become available.

Then the already developed learning-based optimization tech-

niques are ready to play their significant role.

VIII. CONCLUSION

In this paper, we investigated the essence of dynamic and

non-equal CSMA/CA configuration settings in a multi-hop

TSCH network consisting of heterogeneous nodes with differ-

ent packet arrival rates and diverse QoS demands. To address

this problem, we developed a model-free RL algorithm called

QL to set configuration parameters and adapt them at run-time

according to the network changes. Due to the large state-action

space, neural networks are adopted in our QL algorithm to

approximate state-action values and create a self-optimization

framework called the DQN framework. It is implemented in

the parent node of a tree-based multi-hop TSCH network

to configure CSMA/CA parameters of its children. Through

simulations, it is verified that our DQN framework can provide

a better self-optimization and adaptation platform for a TSCH

network rather than pure CSMA/CA which uses equal config-

uration settings for heterogeneous nodes regardless of divers

QoS. It is shown that our proposed DQN framework can react

quickly to the changes in the network and tune the network

configuration parameters to consistently meet the diverse and

dynamic QoS in several minutes even for a large configuration

space.

REFERENCES

[1] “IEEE Standard for Low-Rate Wireless Networks,” IEEE Std 802.15.4-

2015 (Revision of IEEE Std 802.15.4-2011), pp. 1–709, April 2016.

[2] H. Hajizadeh, R. Tavakoli, M. Nabi, and K. Goossens, “Approximated
Pareto Analysis for Fast Optimization of Large IEEE 802.15.4 TSCH
Networks,” in 2020 IEEE 31st Annual International Symposium on

Personal, Indoor and Mobile Radio Communications, 2020, pp. 1–7.

[3] M. Zlmmerling, F. Ferrari, L. Mottola, T. Voigt, and L. Thiele, “pTUNES:
Runtime Parameter Adaptation for Low-power MAC protocols,” in 2012

ACM/IEEE 11th International Conference on Information Processing in

Sensor Networks (IPSN), 2012, pp. 173–184.

[4] J. Shi and M. Sha, “Parameter Self-Configuration and Self-Adaptation
in Industrial Wireless Sensor-Actuator Networks,” in IEEE INFOCOM

2019 - IEEE Conference on Computer Communications, 2019, pp. 658–
666.

[5] T. Winter and P. Thubert and A. Brandt and J. Hui and R. Kelsey and
P. Levis and Kristofer S. J. Pister and R. Struik and JP. Vasseur and
R. Alexander, “RPL: IPv6 Routing Protocol for Low-Power and Lossy
Networks,” RFC, vol. 6550, pp. 1–157, 2012.

[6] Sutton, Richard S. and Barto, Andrew G., Reinforcement Learning: An

Introduction. Cambridge, MA, USA: MIT Press, 1998. [Online]. Avail-
able: http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html

[7] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proxi-
mal Policy Optimization Algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[8] C. J. Watkins and P. Dayan, “Q-Learning,” Machine learning, vol. 8,
no. 3, pp. 279–292, 1992.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,
“ Human-level Control Through Deep Reinforcement Learning,” nature,
vol. 518, no. 7540, pp. 529–533, 2015.

[10] Y. Chen, Y. Liu, M. Zeng, U. Saleem, Z. Lu, X. Wen, D. Jin, Z. Han,
T. Jiang, and Y. Li, “Reinforcement Learning Meets Wireless Networks:
A Layering Perspective,” IEEE Internet of Things Journal, vol. 8, no. 1,
pp. 85–111, 2020.

[11] H. Xu, X. Liu, W. G. Hatcher, G. Xu, W. Liao, and W. Yu, “Priority-
aware Reinforcement-learning-based Integrated Design of Networking
and Control for Industrial Internet of Things,” IEEE Internet of Things

Journal, vol. 8, no. 6, pp. 4668–4680, 2020.
[12] M. Abbasi, A. Shahraki, M. J. Piran, and A. Taherkordi, “Deep Rein-

forcement Learning for QoS provisioning at the MAC layer: A Survey,”
Engineering Applications of Artificial Intelligence, vol. 102, p. 104234,
2021.

[13] X. Zhang, M. Lei, C. Wang, and M. Zhao, “A Transmission and
Backoff Method Based on Deep Reinforcement Learning for Statistical
Priority-based Multiple Access Network,” in 2021 IEEE 94th Vehicular

Technology Conference (VTC2021-Fall), 2021, pp. 1–5.
[14] Y. Zhao, J. Hu, K. Yang, and S. Cui, “Deep Reinforcement Learning

Aided Intelligent Access Control in Energy Harvesting Based WLAN,”
IEEE Transactions on Vehicular Technology, vol. 69, no. 11, pp. 14 078–
14 082, 2020.

[15] Z. Jiang, S. Zhou, and Z. Niu, “Distributed Policy Learning Based
Random Access for Diversified QoS Requirements,” in ICC 2019 - 2019

IEEE International Conference on Communications (ICC), 2019, pp. 1–
6.

[16] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra:
Robust Mesh Networks Through Autonomously Scheduled TSCH.”

[17] Y. Yang and J. Wang, “An overview of multi-agent reinforcement learn-
ing from game theoretical perspective,” arXiv preprint arXiv:2011.00583,
2020.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press,
2016.

[19] Z. Zhang and A. Z. Kouzani, “Implementation of DNNs on IoT devices,”
Neural Computing and Applications, vol. 32, pp. 1327–1356, 2020.

[20] [Online]. Available: https://www.tinyml.org/

Hamideh Hajizadeh received the B.Sc. degree in
electronics engineering and the M.Sc. degree in com-
munication systems engineering both from Tehran
University. She is currently working towards her
Ph.D. in electrical and computer engineering at the
Eindhoven University of Technology (TU/e), Eind-
hoven, the Netherlands.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, 2023 13

Majid Nabi (Member, IEEE) received the B.Sc.
degree in computer engineering from Isfahan Univer-
sity of Technology, Isfahan, Iran, in 2001, the M.Sc.
degree in computer engineering from Tehran Univer-
sity, Tehran, Iran, in 2007, and the Ph.D. degree in
electrical and computer engineering from Eindhoven
University of Technology (TU/e), Eindhoven, The
Netherlands, in 2013.

He is currently an Assistant Professor at the De-
partment of Electrical Engineering, TU/e, and Isfa-
han University of Technology. His research interests

include efficient and reliable networked embedded systems, low-power wire-
less sensor networks, and Internet-of-Things.

Kees Goossens (Member, IEEE) has a BSc in com-
puter science from the University of Wales (1988),
and a PhD from the University of Edinburgh (1993).
In his thesis he investigated the formal verification
of hardware, in particular by using semi-automated
proof systems in conjunction with formal semantics
of hardware description languages such as ELLA
and VHDL. He continued this work at several other
universities before joining Philips Research in the
Netherlands in 1995. At Philips he worked on be-
havioural synthesis for high-throughput video pro-

cessing, then on on-chip communication protocols and memory management.
Until 2010, at Philips/NXP Semiconductors Research he led the team that
defined the Aethereal network on chip for consumer electronics, where real-
time performance and low cost are major constraints. He was also part-time
full professor at the Delft university of technology from 2007 to 2010, and
is currently full professor at the Eindhoven university of technology, where
his research focusses on composable (virtualised), predictable (real-time),
low-power embedded systems, supporting multiple models of computation.
He is also system architect at Topic Embedded Products, working on real-
time dependable dynamic partial reconfiguration in FPGAs. He is editorial
board member for the ACM Transactions on Design Automation of Electronic
Systems (TODAES), associate editor for the Springer Journal of Design
Automation of Embedded Systems (DAEM), and was guest editor for several
special issues on networks on chip. He is author on 25 patents, and published
four books, 100+ articles, with four paper awards. His 2003 paper was selected
as one of the 30 most influential papers of 10 years of the DATE conference.
He is or was steering committee member of ACSD, NOCS, MPSOC, and
TPC member of CODES+ISSS, CRTS, DATE, DSD, ECRTS, FPL, ICPP,
INA-OCMC, OMHI, NoCArc, PARMA, QVVP, ReConFig, RTAS, SAMOS,
SDR, SOC, and VLSI-SOC, etc.

