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Gossip-based Wireless Sensor Networks (GWSN) are complex systems of inherently random nature. Planning and de-
signing GWSN requires a fast and adequately accurate mechanism to estimate system performance. As a first contribu-
tion, we propose a performance analysis technique that simulates the gossip-based propagation of each single piece of 
data in isolation. This technique applies to GWSN in which the dissemination of data from a specific sensor does not de-
pend on dissemination of data generated by other sensors. We model the dissemination of a piece of data with a Stochas-
tic-Variable Graph Model (SVGM). SVGM is a weighted graph abstraction in which the edges represent stochastic varia-
bles that model propagation delays between neighboring nodes. Latency and reliability performance properties are ob-
tained efficiently through a stochastic shortest path analysis on the SVGM model using Monte Carlo (MC) simulation. The 
method is accurate and fast, applicable for both partial and complete system analysis. It outperforms traditional discrete-
event simulation. As a second contribution, we propose a centrality-based stratification method that combines structural 
network analysis and MC partial simulation, to further increase efficiency of the system-level analysis while maintaining 
adequate accuracy. We analyzed the proposed performance evaluation techniques through an extensive set of experi-
ments, using a real deployment and simulations at different levels of abstraction. 
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1. INTRODUCTION 
Wireless Sensor Networks (WSN) are complex sys-

tems of spatially distributed sensor nodes that communi-
cate wirelessly, operate autonomously and perform some 
cooperative action. Due to unstable communication infra-
structure, where communication resources are scarce and 
volatile, gossip protocols represent a good choice for 
WSN [1,2]. In a gossip-based data dissemination strategy, 
nodes store a randomized selection of received data sam-
ples and re-broadcast those data samples in a randomized 
way. Typically, gossip-based communication does not 
require much information about network topology and 
does not include complex route discovery algorithms. The 
probabilistic nature of gossiping provides an ad-hoc rout-
ing infrastructure and data disseminates via multiple alter-
native paths. Gossip-based protocols provide robustness in 
dissemination via increased communication redundancy. 

The performance of Gossip-based WSN (GWSN) 
[1,2] can be assessed through Quality-of-Service (QoS) 
metrics such as latency, the time required to disseminate 
information, and reliability, the success rate of dissemina-
tion. These metrics together with the configuration pa-
rameters that impact them (node placement, radio, MAC, 
gossiping, application layer parameters) represent the 
GWSN design space. For large, heterogeneous GWSN 
where configuration parameters can be set individually 
per node, the size of the design space is huge. 

Planning and designing GWSN requires an efficient 
mechanism to explore the design space and to choose 
optimal configurations. Exhaustive exploration is typical-

ly not a feasible alternative. Design-Space Exploration 
(DSE) could, for example, be performed by a genetic 
algorithm [3,4]. DSE requires a fast and adequately accu-
rate method to evaluate the network QoS for specific 
configuration parameters. 

 
Figure 1. Method overview a) System model b) Performance 
evaluation. 

A lot of modeling efforts in recent years have been fo-
cused on the evaluation of individual system aspects: 
radio [5, 6], data link [7,8], gossiping [9,10], hardware 
platform [11], and so forth. In this paper, we develop an 
approach that combines the individual aspect models into 
an integral system-level model (Figure 1a). Then, using 
the system model, we develop efficient performance eval-
uation techniques – Monte Carlo partial simulation and 
stratification-based analysis (Figure 1b). 

The main contributions of this paper are the following. 
First, we introduce a mathematical model which we call 
the Stochastic-Variable Graph Model (SVGM). It captures 
the dissemination properties of a single piece of data in 
the GWSN with a stochastic graph abstraction. The 
SVGM is used to drive a Monte Carlo (MC) simulation to 
analyze dissemination properties (latency and reliability) 
of specific pieces of data. Second, we propose a stratifica-
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tion-based analysis that provides a good estimation of the 
system-level properties by analyzing selected pieces of 
data and extrapolating the results. Stratification-based 
analysis uses the results of MC partial simulation; it pro-
vides shorter evaluation times, while, as we show, it main-
tains good accuracy. 

In the first part of the paper, we introduce the structure 
of a gossip-based WSN through a motivating case study. 
The important GWSN aspects that affect the performance 
are identified and analyzed. Stochastic and functional 
abstractions are introduced to model these aspects. Our 
goal is to provide fast and adequately accurate analysis. 
Stochastic models abstract from many protocol details, 
allowing shorter simulation times. Therefore, stochastic 
models are preferred over detailed functional ones, except 
when functional models provide a significant gain in ac-
curacy. The nature of gossiping allows us to further im-
prove evaluation speed by using a Stochastic-Variable 
Graph Model. SVGM is a weighted-graph abstraction of 
the GWSN in which edges are decorated with stochastic 
variables representing the time needed to successfully 
propagate information over individual network links. In 
the SVGM model, the propagation of a single piece of 
data is independent of other pieces of data and therefore 
can be analyzed in isolation. 

Typically, sensor nodes in a GWSN periodically sam-
ple some physical phenomena and disseminate measure-
ments through the network. Gossiping disseminates the 
same data simultaneously in multiple directions. In the 
second part of the paper, we show that the dissemination 
of a single piece of data can be efficiently analyzed 
through stochastic shortest path calculation on the SVGM 
using Monte Carlo simulation. The MC method analyzes 
the dissemination of each piece of data separately, i.e., it 
simulates only the part of the system related to the propa-
gation of the specific data item. Such partial simulation 
provides an efficient solution in situations where one is 
interested in the performance of only a subset of data 
items (e.g., high priority data items or worst case analy-
sis). Performance properties of the full system can be 
obtained by performing one MC partial simulation for 
each data item. Experiments show that our MC simulation 
technique outperforms traditional full-system discrete-
event simulation. Furthermore, we show that a good esti-
mation of the full-system properties can be obtained by 
performing MC partial simulations for only a small subset 
of properly chosen data items and then extrapolating the 
results. Data items are partitioned into strata containing 
data items that are expected to show similar performance, 
based on structural properties of the network connectivity. 
The strata are sampled and a subset of data items is cho-
sen for simulation. The classification of data items into 
different strata is based on centrality measures that take 
into account topological properties of their source nodes. 

In the final part of the paper, we evaluate the proposed 
performance estimation techniques in terms of their accu-
racy and speed. We use extensive simulations and a vali-
dation experiment with a real setup. The experiments were 
designed to provide comparisons at different levels of 
abstraction, i.e., real deployment, detailed protocol im-
plementation (MiXiM simulation), and high-level discrete 
event simulation. 

The paper is organized as follows. Section 2 discusses 
related work. Section 3 introduces GWSN through a mo-
tivating case study. Section 4 precisely phrases the prob-
lem that the paper addresses. In Section 5, we introduce 
the SVGM abstraction of GWSN, which forms the bases 
for our MC partial system simulation presented in Section 
6. Section 7 introduces the stratification-based analysis. 
Section 8 presents the experimental evaluation. Section 9 
concludes. 

2. RELATED WORK 
GWSNs characteristically exhibit non-deterministic 

and probabilistic behavior [12]. The local behavior of a 
single node is easy to model, but the complex interactions 
between a large number of nodes with such stochastic 
behavior are very hard to model. It is not surprising that 
the dominant technique for performance evaluation for 
GWSN is simulation. Most alternative methods either 
cannot cope with real-life system complexity (typically 
the analytic models) or have poor computational scalabil-
ity (for instance model-checking approaches). 

Analytic models focus on specific aspects of GWSN 
behavior and provide accurate results only under stringent 
assumptions that limit the modeling scope. In [9], mean-
field analysis is used to evaluate a gossip protocol. It is 
shown that under certain conditions, when the number of 
sensor nodes in a finite area tends to infinity, the overall 
stochastic process can be approximated by a simple, com-
pact deterministic process. An additional underlying as-
sumption in this approach is that nodes are homogeneous, 
i.e., nodes have identical behavior. This assumption al-
lows that nodes can be modeled with simple identical 
stochastic models. Such a model provides insight in the 
gossiping behavior; however, DSE and optimization of 
WSNs might require analysis of systems with non-
homogenous settings of the configurable parameters of the 
nodes (e.g., transmission power, sampling time). Also, the 
non-homogenous effects as a result of the placement of 
the nodes and their interaction with the environment (ob-
stacles, reflection, and refraction) are important for DSE. 
The performance evaluation method proposed in this 
paper supports DSE and allows performance evaluation of 
heterogeneous GWSN. 

Another analytic model for gossip-based item dissem-
ination is given in [13]. The model is derived under the 
assumption of lossless communication, where nodes ex-
hibit homogeneous and uniform behavior over the net-
work. In case the underlying system layers do not provide 
lossless communication, the nodes do not exhibit uniform 
behavior and the gossiping model has to be calibrated 
with experimental results [10]. Model calibration integral-
ly captures the effects of communication aspects and their 
interaction with the gossiping protocol. In contrast, our 
modeling approach makes a clear separation between 
different system aspects, and allows that (if necessary) 
each of those system aspects can be calibrated inde-
pendently (typically, the radio model is the one that re-
quires calibration). This allows greater flexibility, and 
once the radio model is calibrated, performance can be 
estimated for different parameters of the protocols on top 
of the radio layer (e.g., MAC and gossiping parameters). 
The radio model behavior can be obtained directly from 
prototype deployments or from an analytic radio model 



(e.g., in the form of a WSN design tool as described in 
[14]). 

Another approach to gossiping performance evaluation 
is to use model-checking tools. A probabilistic model 
checking tool, Prism, has been used in several studies for 
formal verification and performance analysis of gossip-
ing [15,16]. The model-checking methods suffer from the 
rapid increase in the number of global system states, 
commonly known as the state-space explosion problem. 
The computation overhead and lack of scalability is the 
biggest disadvantage of model-checking techniques. As a 
result, their application is limited to the analysis of small 
networks. To achieve better scalability, some methods 
focus only on the best- and worst-case performance [15]. 

Alternative methods to improve scalability combine 
probabilistic model checking with simulation techniques. 
In [17,16], Prism is used to perform formal analysis of 
gossiping in small network topologies with a goal to pro-
vide insight in the gossiping behavior (e.g., event proba-
bilities and performance bounds). Then the obtained re-
sults are extended to larger networks using Monte Carlo 
techniques. The idea of incorporating small-scale proper-
ties in a large-scale simulation is similar to our approach. 
None of the model-checking approaches is sufficiently 
fast for DSE though; instead, in this paper, we use proba-
bilistic models of the system layers. These models are 
integrated in the SVGM abstraction used to drive fast 
Monte Carlo simulations. 

Discrete-event simulators are the most popular method 
for GWSN analysis. Often, WSN simulations are done by 
modifying some of the general network simulators (ns-
2 [18], Omnet++ [19], Opnet [20]) to the WSN specifics. 
A WSN simulation framework for the Omnet++ simulator 
has been developed – MiXiM [21], which includes many 
libraries and detailed models for lower WSN protocol 
layers. The speed of MiXiM is acceptable for analyzing 
system behavior and gaining insight in the interaction 
between system parts, but it is also not sufficiently fast for 
DSE. We compare our methods with MiXiM simulations 
in Section 8. 

Some of the ideas developed in this paper were pre-
sented in an early form in [22], which informally de-
scribes performance simulation in terms of a case study. 
The current paper generalizes these ideas to a hybrid 
modeling framework that uses a combination of probabil-
istic and functional abstractions for fast performance 
evaluation. In order to analyze dissemination properties of 
specific data items, we propose a MC partial simulation 
technique. Furthermore, we introduce novel ideas to effi-
ciently estimate complete system performance using a 
combination of partial simulations and stratification-based 
network analysis methods. Finally, our experimental eval-
uation is more extensive, including a validation experi-
ment with a real setup and experiments with irregular and 
heterogeneous network topologies. 

3. GOSSIPING WIRELESS SENSOR NETWORKS 
In this section, we introduce gossip-based WSN 

through a motivating case study from the health-care 
domain that serves as a running example throughout the 
paper and as a platform for validating our methods in a 
real setup. We also start introducing the notation we use in 

the paper. For reference, a table with an overview of used 
notation is provided at the end of the document. 

3.1 Motivating case study 
The selected health-care application is developed by 

Roessingh Research and Development (RRD, 
www.rrd.nl) with the goal to assist patients suffering from 
COPD (Chronic Obstructive Pulmonary Disease) in daily 
living activities [37]. Sensor nodes deployed at known 
positions periodically measure various physical phenome-
na, such as pressure, movement or current. The network 
topology is rather static (mobility is limited to occasional 
movement of nodes attached to chairs, doors, etc.) and 
data needs to be collected at regular intervals. Through 
gossiping, measured data is delivered to each node in the 
network. The application may extract data from the 
GWSN at any of the network nodes. 

The basic communication model of such a GWSN 
consists of four layers (physical, data-link, gossiping and 
application layer) as shown in Figure 2. In the rest of this 
section, the communication layers and architecture of a 
typical GWSN are analyzed in more detail using the case 
study. 

 
Figure 2. Layered architecture of a GWSN. 

3.2 Application layer 
Sensor nodes perform measurements with a regular 

time period, sampling period 𝑇𝑠𝑚𝑝. The measurements are 
disseminated and stored in the form of data items. A data 
item is a piece of information that consists of some value 
m (the measurement of the phenomenon) and a version v 
(e.g., a sequence number or a time-stamp indicating when 
the measurement was taken). For simplicity, we assume 
that item versions are consecutive natural numbers start-
ing from 1 (we use ℕ to denote the natural numbers, not 
including 0). Besides that, each data item has a key num-
ber 𝑘 ∈ 𝐾, where 𝐾 denotes the set of keys, that uniquely 
identifies the source of the information contained in that 
data item, e.g., identifying the sensor where the measure-
ment was taken. For simplicity of presentation, we assume 
that each node has one sensor attached to it and that nodes 
have unique ids that also function as data item keys. 

Each node has its own information store for data 
items, called the cache. The size of the cache in the WSN 
is limited and a node can keep just one version of each 
data item. Note that the application layer may extract data 
items from the gossiping layer and store them as required. 
The cache content at node i is denoted with a cache func-
tion: 𝐶𝑖:𝐾 × 𝑇 ↪ 𝒱, where 𝑇 ⊆ ℕ is the time domain 
expressed in terms of discrete communication rounds and 
𝒱 ⊆ ℕ is the set of version numbers. The notation 
𝐶𝑖(𝑘, 𝑡) = 𝑣 denotes that at time 𝑡 in the cache of node 𝑖 
data item 𝑘 is present with version 𝑣. In case data item 𝑘 
is not present, the function is undefined, which we denote 
as 𝐶𝑖(𝑘, 𝑡) =⊥. 

Note that the actual payload of a data item does not 
have any impact on the gossiping behavior and therefore it 



 

does not play a role in the performance metrics used in 
this paper (see Section 4). 

3.3 Gossiping layer 
Gossip protocols are relatively simple communication 

protocols that disseminate information in a manner similar 
to gossiping in social networks. Randomly selected data 
items are repetitively broadcast to nodes within communi-
cation range. Gossiping does not include any error-control 
retransmission mechanism and provides no guarantees 
about information delivery. Nevertheless, the probabilistic 
selection of items to be transmitted provides that items 
can be retransmitted several times, resulting in an im-
proved reliability and robustness. Gossiping is imple-
mented through two policies, item selection and cache 
update. 

Item selection is periodically initiated by the nodes. In 
each periodic communication round, a node transmits a 
packet. The item selection procedure selects data items to 
be transmitted in that packet. The number of data items 
that can fit to a single packet is denoted as 𝑁𝑆. Each time 𝑡 
that the item selection procedure is executed, a node 𝑖 
selects 𝑁𝑆 data items from the information pool in its 
cache 𝑃𝑜𝑜𝑙(𝑖, 𝑡) = {𝑘 ∈ 𝐾|𝐶𝑖(𝑘, 𝑡) ≠⊥} and creates the 
packet payload (Figure 3). In the selection procedure 
implemented in our case study, for instance, one of the 
selected data items is always the local measurement, while 
the other (𝑁𝑆 − 1) items are randomly selected from items 
present in the cache. 

 
Figure 3. Item selection procedure 

The cache update procedure is executed each time a 
node receives a packet. The typical update procedure is 
simple: as soon as a node receives a newer version of a 
data item the old one is overwritten. 

3.4 Data-link layer 
Data items selected for transmission are encapsulated 

in MAC packets. The MAC protocol defines a transmis-
sion time schedule for each packet. MAC efficiency de-
pends on its ability to create a communication schedule 
that (1) avoids collisions, i.e., simultaneous transmissions 
by nodes in communication range and (2) provides sched-
ule matching, i.e., at the moment when a packet is trans-
mitted, the receiver’s radio is in the listening mode. 

In our case study, we use gMAC [23], a TDMA-based 
MAC protocol, designed for gossiping. The communica-
tion schedule is organized in TDMA frames consisting of 
assigned communication slots to provide collision-free 
communication. To reduce energy consumption, the 
communication takes place only in a small part of the 
frame, the active period, and each node transmits only one 
packet per TDMA period. Scheduling is similar to the 
LMAC protocol [24] and each node gets a transmission 
slot unique within the 2-hop neighborhood. gMAC di-
vides the active period in 𝑁𝐿 listening segments. In each 

round, a node randomly chooses to listen to only one of 
those segments. As a result, energy consumption is re-
duced, but only a subset of neighbor nodes can receive a 
transmitted packet. There is no error control mechanism at 
the MAC layer, and a packet is transmitted only once. 

3.5 Physical layer 
The GWSN case study is implemented on the Myri-

aNed WSN platform [25]. A MyriaNode is the basic 
building block of MyriaNed. It uses a 2.4GHz packet 
radio (Nordic nRF24L01) with 32 byte packets, and a data 
rate of 2Mbps. 

The wireless medium is inherently unreliable and oc-
casionally packets get lost. Packet reception success can 
be seen as a stochastic process depending on the various 
parameters of the physical layer, such as transmission 
frequency, packet size, antenna radiation properties, dis-
tance between nodes, interference in the radio channel, 
and obstacles in the environment. 

4. PROBLEM STATEMENT 
In this section we define the problem in more detail. 

We define the system-level quality metrics that provide an 
insight in the system behavior. 

4.1 Data item dissemination 
We first define notation that allows us to capture the 

dissemination process of data items in the network. The 
gossip process for a given data item (𝑘, 𝑣) with key 𝑘, and 
version 𝑣 starts at the moment 𝑇𝑆(𝑘, 𝑣), when information 
source k generates data item (𝑘, 𝑣). 

Definition 1. The arrival time 𝑇𝐸(𝑗, 𝑘, 𝑣) of data item 
(𝑘, 𝑣) at node 𝑗, is the number of the communication 
round in which data item arrives for the first time at node 
𝑗. 

 𝑇𝐸(𝑗, 𝑘, 𝑣) = inf�𝑡�𝐶𝑗(𝑘, 𝑡) = 𝑣� (1) 

We use 𝑇𝐸(𝑗, 𝑘, 𝑣) = ∞ to denote the situation where data 
item (𝑘, 𝑣) never arrives at node 𝑗. In that case we say that 
it is lost. 

Definition 2. Delivery time 𝐷𝑗(𝑘, 𝑣), denotes the time 
necessary to deliver version 𝑣 of data item 𝑘 from its 
source node to node 𝑗. It is defined as the time between 
the moment when the version of data item 𝑘 is generated, 
𝑇𝑆(𝑘, 𝑣), until the moment it appears in the cache of node 
𝑗, 𝑇𝐸(𝑗, 𝑘, 𝑣): 

𝐷𝑗(𝑘, 𝑣) = �𝑇𝐸
(𝑗, 𝑘, 𝑣) − 𝑇𝑆(𝑘, 𝑣) 𝑇𝐸(𝑗, 𝑘, 𝑣) ≠ ∞

⊥ 𝑇𝐸(𝑗, 𝑘, 𝑣) = ∞ (2) 

Delay 𝐷𝑗(𝑘, 𝑣) is undefined (⊥) if an item is not delivered. 
 
Definition 3. Delivery success, 𝑈𝑗(𝑘, 𝑣), of item (𝑘, 𝑣) 

to node 𝑗 is 1 if the data item arrives at node 𝑗 and 0 oth-
erwise: 
 𝑈𝑗(𝑘, 𝑣) = �0 if 𝑇𝐸(𝑗, 𝑘, 𝑣) = ∞

1 otherwise
 (3) 

4.2 Gossiping properties 
The quality of gossip-based information dissemina-

tioncan is characterized with two essential properties: the 
number of nodes that ultimately receive the data items and 



the time needed for the data items to spread. In this work, 
these two properties are evaluated through two metrics, 
referred to as reliability and latency, respectively. These 
properties are defined precisely in the following subsec-
tions respectively. 

4.2.1 Latency 
Latency is a metric that quantifies the time (the num-

ber of communication rounds) necessary to distribute a 
data item. We consider three different levels of latency 
metrics: point-to-point, point-to-multipoint and network 
latency. 

Point-to-point latency 𝐿𝑗(𝑘) denotes the average time 
necessary to deliver a version of data item 𝑘 from its 
source node 𝑘 to some node 𝑗, averaged over all versions 
that reach node 𝑗. 

Definition 4. The point-to-point latency 𝐿𝑗(𝑘) is de-
fined as the sample mean of the delivery times of all ver-
sions that reach 𝑗. It is formally defined as follows. 

𝐿𝑗(𝑘) = lim
𝑁𝑠𝑚𝑝→∞

∑ 𝐷𝑗(𝑘, 𝑣)1≤𝑣≤𝑁𝑠𝑚𝑝,𝑈𝑗(𝑘,𝑣)=1

∑ 𝑈𝑗(𝑘, 𝑣)1≤𝑣≤𝑁𝑠𝑚𝑝

 (4) 

Definition 5. The point-to-multipoint latency 𝐿𝐷(𝑘) 
characterizes the time necessary to deliver data item 𝑘 to 
the set 𝐷 of destinations of interest. It is defined as the 
average value of point-to-point latencies for data items 𝑘 
over the set 𝐷: 

 
 𝐿𝐷(𝑘) =

1
|𝐷|�𝐿𝑗(𝑘)

𝑗∈𝐷

 (5) 

(It assumes that the nodes in 𝐷 are reached by items 𝑘, so 
they have a well-defined point-to-point latency.) 

Definition 6. Thirdly, the network latency 𝐿𝐾,𝐷 is the 
time to deliver an item averaged over all data item keys of 
interest 𝐾. It is defined as the average point-to-multipoint 
latency over the set 𝐾 of data item keys, for a given set 𝐷 
of destinations of interest: 

 𝐿𝐾,𝐷 =
1

|𝐾|�𝐿𝐷(𝑘)
𝑘∈𝐾

 (6) 

4.2.2 Reliability 
Reliability is defined as the fraction of successfully de-

livered data items. If a node does not receive some version 
of a data item, we consider that version lost for that spe-
cific node. Similar to latency, we define three metrics: 
point-to-point reliability, point-to-multipoint reliability 
and network reliability. 

Definition 7. Point-to-point reliability 𝑅𝑗(𝑘) denotes 
the fraction of versions of data item 𝑘 delivered success-
fully to node 𝑗. It is defined as the ratio of the number of 
versions of data item 𝑘 that appear in the cache of node 𝑗, 
over the total number of generated versions. Point-to-
point reliability is formally defined as follows. 

 𝑅𝑗(𝑘) = lim
𝑁𝑠𝑚𝑝→∞

1
𝑁𝑠𝑚𝑝

� 𝑈𝑗(𝑘, 𝑣)

𝑁𝑠𝑚𝑝

𝑣=1

 (7) 

Point-to-multipoint reliability 𝑅𝐷(𝑘) and network reli-
ability 𝑅𝐾,𝐷 are defined in the same way as their latency 
counterparts. 

4.3 Other properties 
Lifetime denotes the time necessary for nodes in the 

network to deplete their energy source and thus depends 
on the energy consumption. It is an important perfor-
mance metric for WSN design. The power consumption 
depends on the transmission power settings of individual 
nodes, packet length, number of slots in the active period, 
etc. The type of gossiping networks analyzed in this paper 
exhibits periodic behavior, where parameters that affect 
power consumption do not change over time. In such a 
case, estimation of node power consumption is straight-
forward and therefore lifetime is not a metric of interest in 
this paper. 

Redundancy in the communication is another relevant 
gossiping metric. In general redundancy can be: 1) trans-
mission redundancy, showing how many times a node has 
transmitted a data item (that is already received by all 
neighbors); 2) receiving redundancy, showing how many 
times a node has received the same data item. For latency 
and reliability estimation all that matters is the moment 
when a node has received a data item for the first time. 
For each node, we have to simulate all data item transmis-
sions until all neighbors have received that data item. 
Further (redundant) transmissions do not affect the relia-
bility and latency metrics, and do not need to be simulat-
ed. In order to estimate redundancy, for each node, simu-
lation of data item transmissions should continue until the 
data item is replaced in the cache (i.e., until it is overwrit-
ten with a newer version). Such a modification is straight-
forward and we do not address the redundancy metric 
further in this paper. 

4.4 GWSN-specific challenges 
There are several factors specific to GWSN that make 

performance evaluation challenging: 
1) Communication between nodes in WSN is intrinsi-

cally unreliable, or stochastic, due to the nature of the 
radio channel and data-link properties. The time necessary 
for a node to spread information to its neighbors is there-
fore not fixed, but a stochastic variable that depends on 
the system attributes. 

2) Data items are simultaneously propagated in multi-
ple directions, and multiple copies of the same data item 
are present at different locations in the network. The la-
tency to reach some node is determined by the distribution 
path (chain of nodes) that the item followed until the first 
time the node receives it. In Figure 4, two possible distri-
bution paths for information from the node in the bottom 
left corner to all other nodes are given. A connection be-
tween two nodes indicates that the item reached a node for 
the first time by a transmission from the other node. Both 
the distribution paths may be the result of the same sto-
chastic process; due to stochastic variations in link delays 
the concrete paths turned out different. 

3) Due to the random nature of GWSN, a newer ver-
sion of the same data item may be distributed faster than 
an older one. This leads to suppressed item versions, 
where an old version is discarded and its further dissemi-
nation is interrupted. The interaction between different 
data item versions has an important effect on system per-
formance, especially on reliability. 



 

 
Figure 4. Distribution paths for two different data item versions 
that start from the lower left node. 

The above challenges show that a performance evalua-
tion method for GWSN has to consider the stochastic 
nature of WSN communication, the random distribution 
paths, and the interactions between different data item 
versions. 

5. STOCHASTIC-VARIABLE GRAPH MODEL 
In this section we introduce our mathematical abstrac-

tion of the dissemination process of a data item. We show 
how the relevant properties of GWSN can be captured in a 
stochastic-variable graph model (SVGM). A stochastic-
variable graph 𝐺𝑆𝑉(𝑉,𝐸,𝑋), is a connected, directed 
graph, with vertices 𝑉 and edges 𝐸. The vertices represent 
WSN nodes and the edges represent direct links for data-
item dissemination. The edge weights 𝑋:𝐸 →
(ℕ → [0,1]) in the graph represent the distributions of the 
duration of information dissemination along the given 
edge (recall that time is measured in terms of discrete 
communication rounds). The edge weights are stochastic 
variables 𝑋(𝑖, 𝑗) with (𝑖, 𝑗) ∈ 𝐸, where stochastic variable 
𝑋(𝑖, 𝑗) models the propagation delay from node 𝑖 to node 
𝑗. An SVGM is used to capture the dissemination process 
of a specific version 𝑣 of a data item 𝑘. In general, for 
each data item (𝑘, 𝑣) an SVGM is instantiated, i.e., for 
each version 𝑣 and key 𝑘 stochastic variables 𝑋𝑘,𝑣(𝑖, 𝑗), 
𝑖, 𝑗 ∈ 𝑉 are instantiated. 

Stochastic variables describing propagation time have 
to capture the important system aspects (radio, data-link, 
gossiping and application) of a GWSN and the interaction 
between them. The gossiping properties are analyzed 
through a stochastic ensemble of weighted graphs sam-
pled from the SVGM (Section 6). In this section, first, we 
introduce the stochastic models of relevant system aspects 
required for an SVGM. Second, we discuss the composi-
tion of the stochastic variables and describe the process of 
sampling weighted graphs from the SVGM. Finally, we 
illustrate how SVGM sampling provides a basis for per-
formance simulation. 

5.1 Stochastic models of GWSN system aspects 
The stochastic variable 𝑋(𝑖, 𝑗) describing the time 

necessary to deliver a data item over link (𝑖, 𝑗) integrates 
several simple stochastic models of different system as-
pects: communication (radio and MAC) and computation 
(gossiping and application). 

5.1.1 Communication aspects of GWSN 
The communication aspects of a WSN can be mod-

elled by a connected directed weighted graph 𝐺 =
(𝑉,𝐸, 𝑝), where the set 𝑉 of vertices denotes the nodes in 
the network, the set of directed edges 𝐸 captures the po-

tential communication links, and 𝑝: 𝐸 → [0,1] is an edge 
weight that captures the probability of successful commu-
nication over the links. 

Definition 8. Success probability 𝑝(𝑖, 𝑗) specifies the 
probability that a packet sent by node 𝑖 is successfully 
received by node 𝑗. 

This probability models simultaneously the physical 
radio and the data link (MAC) behavior. Subsequent 
transmissions on the radio level are assumed to be inde-
pendent and identically distributed. 

For the radio part, the packet reception ratio (PRR) is a 
commonly used metric to quantify radio communication. 

Definition 9. Packet reception ratio 𝑝𝑟(𝑖, 𝑗) denotes 
the probability that a packet transmitted at node 𝑖 is suc-
cessfully received at node 𝑗. 

According to [26] this is a fairly good model to ap-
proximate reality. The experiment with a real setup that 
we did, and on which we report in Section 8, confirms that 
conclusion. The point-to-point PRRs can be obtained 
through direct calibration measurements or using an ana-
lytic model (e.g., in the form of a WSN design tool as 
described in [14], or models such as those of [5,27]). 

Definition 10. The MAC success rate 𝑝𝑚𝑎𝑐(𝑖, 𝑗) mod-
els MAC properties. It is defined as the probability that a 
packet transmitted by the data-link layer of a node 𝑖 is 
received successfully at the data-link layer of a node 𝑗, 
assuming the physical radio communication is successful.  

Proposition 1. In the gMAC protocol the MAC suc-
cess rate is 𝑝𝑚𝑎𝑐 = 1 𝑁𝐿⁄   

Proof. The MAC protocol is successful in the case 
that: 1) when node 𝑖 transmits a packet, node 𝑗 has its 
receiver on (matching) and 2) none of the other nodes 
within the interference range of node 𝑗 transmit a packet at 
the same time (collision). In the case study, the gMAC 
protocol provides collision-free communication. Thus, 
here MAC success rate depends only on the schedule 
matching between nodes 𝑖 and 𝑗. In the gMAC protocol, a 
node randomly chooses one of 𝑁𝐿 non-overlapping listen-
ing segments, so that the MAC success rate is given by: 
𝑝𝑚𝑎𝑐 = 1 𝑁𝐿⁄ .□ 

The radio and MAC probabilities are per-transmission 
independent, therefore the weights 𝑝(𝑖, 𝑗) in our WSN 
model become: 𝑝(𝑖, 𝑗) = 𝑝𝑚𝑎𝑐(𝑖, 𝑗) ⋅ 𝑝𝑟(𝑖, 𝑗). In our case 
study, this results in 𝑝(𝑖, 𝑗) = 𝑝𝑟(𝑖, 𝑗) 𝑁𝐿⁄ .  

5.1.2 Computation aspects of GWSN 
The computation aspects of WSN are related to the 

cache-specific processes: item selection and cache update. 
The item selection procedure is the heart of the gossiping 
mechanism. It selects 𝑁𝑆 data items from the cache. In our 
case study, the local measurement and 𝑁𝑆 − 1 randomly 
selected other data items are chosen. Except during an 
initial start-up period, caches will always be full and con-
tain one data item from each of the sources in 𝐾 (the 
freshest received version). 

Proposition 2. After the initial period is over, the 
probability that a data item 𝑘 is selected from the cache of 
node 𝑖, in our case study, is: 



 𝑝𝑠(𝑖, 𝑘) = �
𝑁𝑆 − 1
|𝐾| − 1

if 𝑘 ≠ 𝑖

1 if 𝑘 = 𝑖
 (8) 

Proof. Straightforward. If 𝑘 = 𝑖 the item is guaranteed 
to be selected in this protocol. If 𝑘 ≠ 𝑖  then the remaining 
𝑁𝑆 − 1 places for items to be communicated are uniformly 
randomly selected from the remaining |𝐾| − 1 items in 
the filled cached.□ 

Note that the model captures the behavior in steady-
state and there may be some discrepancies during the 
transient period at the startup, until caches are fully filled.  

The application requires only the freshest data, so each 
time a new version is received the old one is removed 
from the cache. The cache update process is deterministic, 
but dependent on the data item versions present in the 
cache. A stochastic abstraction describing cache content 
from the perspective of an individual data item cannot be 
obtained easily [10]. Instead, we propose an approach that 
first models item dissemination without considering sup-
pression of data items by newer versions and incorporate 
this effect later on when we integrate the dissemination of 
individual items (Section 6.3). 

5.2 Monte Carlo sampling of SVGM  
We evaluate the characteristic properties of the sto-

chastic graphs using Monte Carlo sampling. Monte Carlo 
sampling of the SVGM provides a concrete, non-
stochastic, weighted graph 𝐺𝑆�𝑉,𝐸,𝐷(𝑘, 𝑣)�, where edge 
weights 𝐷(𝑘, 𝑣):𝐸 → ℕ correspond to the sampled, con-
crete propagation delays of data item 𝑘 version 𝑣 (see 
Figure 5). This graph represents the concrete dissemina-
tion of a single version (5 in the figure) of a single data 
item (2). 

 
Figure 5. Stochastic Variable Graph Model (left, with 𝑋𝑖𝑗 denot-
ing 𝑋𝑘,𝑣(𝑖, 𝑗)) and weighted graph 𝐺𝑆�𝑉,𝐸,𝐷(2,5)� (right, edge 
weights are sampled propagation delays). 

The time (number of rounds) required for node 𝑖 to de-
liver a data item to node 𝑗 depends on two factors: 

1) The number of attempts (transmissions) needed to 
deliver a data item successfully. This number depends on 
the probability of successful item transmission, and is 
independent among different neighbor nodes of the source 
node. 

2) The time between attempts to transmit the same da-
ta item. This time depends on the item selection procedure 
which determines what is going to be transmitted in each 
frame. The time between transmissions is the same for all 
neighbors of the source node due to the use of broadcast 
communication. 

Thus, the propagation delay is modeled as the stochas-
tic process, 𝑋𝑘,𝑣(𝑖, 𝑗), which consists of two constituent 

stochastic processes: item transmission and item selection. 
Based on the previous analysis of the propagation delay, 
we have that: 

1) The process of item selection at node 𝑖 is common 
for all stochastic variables 𝑋𝑘,𝑣(𝑖, 𝑗), for 𝑗 such that 
(𝑖, 𝑗) ∈ 𝐸. The time between transmission attempts 
for specific data items is the same for all outgoing 
edges of vertex 𝑖. As a result, stochastic variables 
𝑋𝑘,𝑣(𝑖, 𝑗) and 𝑋𝑘,𝑣(𝑖,𝑛) are correlated. For the ex-
ample given in Figure 6, the times between trans-
missions of some data item from node 𝑖 are the 
same for neighbor nodes 𝑗, 𝑙, and 𝑛. 

2) The processes of item selection on different nodes 
are assumed to be independent, as are the processes 
of the item transmissions between different pairs of 
nodes. Based on these assumptions, it is not hard to 
show that stochastic variables 𝑋𝑘,𝑣(𝑖, 𝑗) and 
𝑋𝑘,𝑣(𝑚,𝑛) are independent if 𝑖 ≠ 𝑚. 

 
Figure 6. Spatial correlation. 

We denote the number of transmissions of data item 𝑘, 
version 𝑣 in node 𝑖 until a packet is delivered successfully 
to node 𝑗 as 𝑁𝑇𝑥(𝑖, 𝑗, 𝑘, 𝑣). Furthermore, we denote the 
time between the �𝑚-1�-th and the 𝑚-th transmission of 
data item 𝑘 from node 𝑖 as 𝑇𝑇𝑥(𝑚, 𝑖, 𝑘, 𝑣) (where for 
𝑚 = 1, 𝑇𝑇𝑥 returns the time from arrival until first trans-
mission). Recall the successful transmission probability 𝑝 
and the item selection probability 𝑝𝑠 introduced in Sec-
tion 5.1. The success per round has a Bernoulli distribu-
tion and the number of Bernoulli trials needed to get one 
success is described by a geometric distribution. Then the 
stochastic processes of item transmission (the number of 
trials before an item is successfully transmitted) and the 
time between transmissions (the number of trials before 
the item is selected) are both described with geometric 
distributions: 

Pr(𝑁𝑇𝑥(𝑖, 𝑗, 𝑘, 𝑣) = 𝑙) = �1 − 𝑝(𝑖, 𝑗)�𝑙−1𝑝(𝑖, 𝑗) (9) 

Pr(𝑇𝑇𝑥(𝑚, 𝑖, 𝑘,𝑣) = 𝑙) = �1 − 𝑝𝑠(𝑖, 𝑘)�𝑙−1𝑝𝑠(𝑖, 𝑘) (10) 

Note that the distributions are independent of the version 
𝑣. 

Based on the previous analysis, a general strategy for 
random sampling of the stochastic variable for link delay 
is defined (Monte Carlo sampling). First, for each of the 
neighbors 𝑗 of node 𝑖, the number of required transmis-
sions to successfully deliver data item from node 𝑖 to node 
𝑗, 𝑁𝑇𝑥(𝑖, 𝑗, 𝑘, 𝑣), is sampled from the distribution of 
Eqn. (9). The total number of transmissions needed to 
deliver item 𝑘, version 𝑣, over all outgoing links from 
node 𝑖, is determined as the maximum number required 
for any neighbor 𝑗: 



 

 𝑁𝑚𝑎𝑥(𝑖, 𝑘, 𝑣) = max
𝑗 𝑠.𝑡.(𝑖,𝑗)∈𝐸

𝑁𝑇𝑥(𝑖, 𝑗, 𝑘, 𝑣) (11) 

To model the distribution process of data item (𝑘, 𝑣) 
to all neighbors of 𝑖, we therefore need concrete samples 
for 𝑁𝑚𝑎𝑥(𝑖, 𝑘, 𝑣) lengths of inter-transmission intervals 
The intervals between transmissions 𝑇𝑇𝑥(𝑚, 𝑖, 𝑘, 𝑣), 
1 ≤ 𝑚 ≤ 𝑁𝑚𝑎𝑥(𝑖, 𝑘, 𝑣) are sampled from the distribution 
of Eqn. (10). 

Finally, the sampled delay between nodes 𝑖 and 𝑗 in 
the SVGM for item 𝑘 and version 𝑣 is calculated as the 
sum of the first 𝑁𝑇𝑥(𝑖, 𝑗, 𝑘, 𝑣) inter-transmission intervals, 
namely the number of attempts to transmit the item until 
success for neighbor 𝑗: 

 𝐷𝑖𝑗(𝑘, 𝑣) = � 𝑇𝑇𝑥(𝑚, 𝑖, 𝑘, 𝑣)
𝑁𝑇𝑥(𝑖,𝑗,𝑘,𝑣)

𝑚=1

 (12) 

5.3 Shortest-path abstraction of dissemination 
Once we have the sampled graph representing the 

node to node dissemination of a data item, we can use it to 
determine point-to-point latencies. The analysis is based 
on the following characteristic of the sampled graph. 

Proposition 3. The latencies of a data item (𝑘,𝑣) to 
each of the nodes can be calculated as the shortest paths 
from node 𝑘 in the sampled graph. 

Proof. Gossiping disseminates data items over multi-
ple links simultaneously, resulting in stochastic distribu-
tion paths. The edge weights of the sampled graph are the 
concrete propagation delays of the links for a specific data 
item. The dissemination along a single link starts as soon 
as the data item arrives at the source of the link and takes 
an amount of time according to the edge weight. Hence, 
the time to propagate along a certain path is obtained from 
the sum of the edge weights. The shortest path between 
nodes 𝑘 and 𝑗 then corresponds to the first arrival of data 
item generated at node 𝑘 to node 𝑗.□ 

The evaluation of latencies using the sampled graph is 
illustrated in the example in Figure 7. 

In order to get statistically significant metric estima-
tion, the propagation of sufficiently many data item ver-
sions has to be simulated. For each data item version, a 
new weighted graph is sampled from the SVGM. The 
point-to-point latency for delivery of data items from node 
𝑘 to node 𝑗 as defined in Eqn. (4) can be estimated as: 

 𝐿�𝑗(𝑘) =
1

𝑁𝑠𝑚𝑝
� 𝑇𝐸(𝑗, 𝑘, 𝑣) − 𝑇𝑆(𝑘, 𝑣)

𝑁𝑠𝑚𝑝

𝑣=1

 (13) 

where 𝑁𝑠𝑚𝑝 denotes the total number of simulated ver-
sions. 

6. MONTE CARLO PARTIAL SIMULATION 

6.1 Overview of the method  
The shortest-path analysis described in the previous 

section captures the propagation of an individual data item 
(independently from propagation of other data items in the 
system). Such analysis does not take into account poten-
tial loss of data items due to suppression by newer ver-
sions. The interaction between different versions of a data 
item can be analyzed through a combination of a discrete-
event simulation and the Monte Carlo shortest path analy-
sis. The shortest-path analysis remains the core of such an 
approach, but the discrete-event mechanism allows us to 
combine results corresponding to different versions of a 
data item, i.e., different instances of sampled graphs. An 
event is defined as the first arrival of some data item to 
some node. A graph sampled from an SVGM describes 
event times assuming no interaction between data items. 
The algorithm to calculate event times for a single data 
item in isolation is introduced in Section 6.2. An efficient 
method for the simultaneous analysis of multiple item 
versions is presented in Section 6.3. 

The duration of a MC simulation is typically smaller 
than the simulation time needed for a plain discrete-event 
(DE) simulation due to two main reasons: 

1) MC simulation is partial. Propagation patterns for 
only one data item are simulated at a time, while the prop-
agation of all data items is simultaneously simulated in 
DE simulation.  

2) The number of events that are simulated is consid-
erably smaller in comparison with standard DE simula-
tion. In plain DE simulation, an event corresponds to 
individual packet transmissions, while in the MC simula-
tion an event denotes first-time successful reception of an 
item. Thus, fewer events need to be simulated. 

6.2 MC simulation for a single data item version 
The problem of calculating the latency of a data item 

in a sampled graph can be mathematically described with 
a set of fixed-point equations, and solved using Dijkstra’s 
shortest-path algorithm.  

Assume that system time 𝑡𝑚𝑐 denotes the time passed 
from the beginning of simulation (measured in communi-
cation rounds). Event time 𝑇𝐸(𝑗, 𝑘, 𝑣) is defined as the 
time when node 𝑗 receives a data item (𝑘, 𝑣) for the first 
time. This event time corresponds to the arrival time as 
defined in Eqn. (1). 

We maintain two lists according to the node status 
with respect to the specific data item: the list of the nodes 
that have received data item (𝑘, 𝑣), called the infected 
nodes: 

 
Figure 7. Calculating latency of a single version (5) of a single data item (2) to all other nodes (with 𝑋𝑖𝑗 denoting 𝑋𝑘,𝑣(𝑖, 𝑗)). 



𝐼𝑁(𝑡𝑚𝑐 , 𝑘, 𝑣) = {𝑖 ∈ 𝑉|𝑇𝐸(𝑖, 𝑘, 𝑣) < 𝑡𝑚𝑐} (14) 

and the list of nodes that have not yet received the data 
item, the susceptible nodes: 

𝑆𝑈(𝑡𝑚𝑐 , 𝑘, 𝑣) = 𝑉\𝐼𝑁(𝑡𝑚𝑐 , 𝑘, 𝑣) (15) 

The naming of the lists comes from the fact that gossiping 
behavior mimics the spread of a virus. An event results in 
a change in the infected list, i.e., a node that has received 
a data item version for the first time is added to the list of 
the infected nodes and removed from the list of the sus-
ceptible nodes. 

Furthermore, we denote the inter-event time 
𝑇𝐼𝐸(𝑖, 𝑗, 𝑘, 𝑣) as the time necessary for node 𝑖 that has 
received data item (𝑘, 𝑣) to deliver it to node 𝑗. Sampling 
the SVGM provides a weighted graph 𝐺𝑆�𝑉,𝐸,𝐷(𝑘, 𝑣)�, 
where the inter-event times are the edge labels in that 
graph: 

 𝑇𝐼𝐸(𝑖, 𝑗, 𝑘, 𝑣) = 𝐷𝑖𝑗(𝑘, 𝑣) (16) 

The inter-event time 𝑇𝐼𝐸(𝑖, 𝑗, 𝑘, 𝑣) is the result of a time-
invariant process and thus it does not depend on the mo-
ment when the item arrives at node 𝑖. 

For the source node, the event time of the arrival of 
item (𝑘, 𝑣) is equal to its sampling time 𝑇𝑆(𝑘, 𝑣). In case 
destination node 𝑗 is not the source node (𝑗 ≠ 𝑘), a data 
item can be delivered to node 𝑗 only via one of its neigh-
bors. If 𝑇𝐸(𝑖, 𝑘, 𝑣) denotes the time when a node 𝑖, neigh-
bor of node 𝑗, received the data item (𝑘, 𝑣) for the first 
time, then the time when node 𝑖 delivers the same data 
item for the first time to node 𝑗 is equal to: 𝑇𝐸(𝑖, 𝑘,𝑣) +
𝑇𝐼𝐸(𝑖, 𝑗, 𝑘, 𝑣). This sum is called an event-time estimate for 
node 𝑗 via node 𝑖. The time of the first arrival of data item 
(𝑘, 𝑣) to node 𝑗 is equal to the minimum of the event-time 
estimates via each of the neighbor nodes. The set of event 
times can be described with the following fixed-point 
equations: 
𝑇𝐸(𝑗, 𝑘, 𝑣) = 𝑇𝑆(𝑘, 𝑣) 𝑗 = 𝑘
𝑇𝐸(𝑗, 𝑘, 𝑣) = min

𝑖 𝑠.𝑡.  (𝑖,𝑗)∈𝐸
𝑇𝐸(𝑖, 𝑘, 𝑣) + 𝑇𝐼𝐸(𝑖, 𝑗, 𝑘, 𝑣) 𝑗 ≠ 𝑘 (17) 

It is straightforward to show that the equations permit a 
unique solution [28]. The set of fixed-point equations is 
solved dynamically. As shown in [28], the solution for 
this set of equations is the same as the result of Dijkstra’s 
shortest path algorithm applied on graph 
𝐺𝑆�𝑉,𝐸,𝐷(𝑘, 𝑣)� with an additional shift according to the 
starting sampling time value (Figure 7). Thus, Dijkstra’s 
algorithm [29,30] can be used as a method for event list 
calculation. 

 
Figure 8. MC pseudo-code. 

The pseudo-code for MC event list calculation based 
on Dijkstra’s algorithm is given in Figure 8. Initially, the 
event time of the source node is set to its sampling time, 
while all other event times are set to infinity. Each time 
when an event is executed, the MC algorithm selects the 
vertex 𝑝 ∈ 𝑆𝑈 with the minimum tentative event time, 
adds p to the infected list and removes it from the suscep-
tible list, making its event time definitive, and finally 
updates tentative event times of remaining nodes (lines 7-
8.). The event times are tentative, since its computation 
considers only the currently infected nodes. Each time 
when a new node is infected, computed event times might 
change and have to be updated (line 8.). The minimum 
tentative event time is the time of the next event since this 
cannot change anymore. 

Computationally, the most demanding task in this pro-
cedure is to obtain the minimum of the tentative event 
times (from the set of susceptible nodes, line 5.). Each 
time new tentative event times are calculated (lines 7-8.), 
the values have to be sorted. In order to reduce the proce-
dure’s complexity, in our implementation, the set of tenta-
tive event times is organized as a min-priority binary 
heap [30]. In that case, the complexity of MC event list 
calculation is 𝒪(|𝐸| 𝑙𝑜𝑔|𝑉|), where |𝐸| denotes the total 
number of edges and |𝑉| the number of vertices in the 
graph 𝐺𝑆. 

6.3 MC simulation for multiple data item versions 
from the same source 
The MC simulation method described in the previous 

section does not take into account the interaction between 
different versions of a data item. The more often items are 
sampled, the more refined is the sampling of the physical 
phenomena being monitored, but the higher is the chance 
that some items are overtaken by newer versions and 
therefore are considered lost. In this section, we show how 
the set of fixed-point equations describing event times can 
be extended with a set of deadline constraints so that rele-
vant interactions which lead to lost items are captured. 

The propagation of 𝑁𝑠𝑚𝑝 versions of data item k can 
be described with the stochastic ensemble of weighted 
graphs sampled from SVGM for all 𝑁𝑠𝑚𝑝 versions: 

𝑮𝑘 = �𝐺𝑆�𝑉,𝐸,𝐷(𝑘, 𝑣)��1 ≤ 𝑣 ≤ 𝑁𝑠𝑚𝑝� (18) 

According to the GWSN description in Section 3.2, dis-
semination of a data item (𝑘, 𝑣) is independent of the 
dissemination of previous versions of the same data item; 
older versions never replace newer versions. As a result, 
the propagation properties of a data item (𝑘, 𝑣), computed 
from the sampled graph 𝐺𝑆�𝑉,𝐸,𝐷(𝑘, 𝑣)�, do not have 
any influence on the event times of the data item (𝑘, 𝑣 +
1), but might influence the event times of the data item 
(𝑘, 𝑣 − 1). The idea is to analyze the stochastic ensemble 
of Eqn. (18) in reverse temporal order. In this case, when-
ever it is necessary, MC simulation can ‘look into the 
future’ and check whether a specific event is suppressed 
by some other event corresponding to the propagation of 
some later version of the same data item. 

As before, the time of the first arrival of data item 
(𝑘, 𝑣) to node 𝑗 is equal to the minimum over correspond-
ing event-time estimates of the set of neighbor nodes. This 
is described with the same set of fixed-point equations 

𝑇𝐸 = 𝐸𝑣𝑒𝑛𝑡_𝑙𝑖𝑠𝑡(𝐺𝑆, 𝑘, 𝑣)  
1. Initialize: 𝑇𝐸(𝑖, 𝑘, 𝑣) = ∞, 𝑇𝐸(𝑘, 𝑘, 𝑣) = 𝑇𝑆(𝑘, 𝑣) 
2. 𝐼𝑁 = ∅ 
3. 𝑆𝑈 = 𝑉[𝐺𝑆] 
4. while 𝑆𝑈 ≠ ∅ do 
5.  𝑝 ← argmin𝑖∈𝑆𝑈 𝑇𝐸(𝑖, 𝑘, 𝑣)  
6.  𝐼𝑁 ← 𝐼𝑁 ∪ {𝑝}; 𝑆𝑈 ← 𝑆𝑈\{𝑝} 
7.  for each 𝑞 ∈ 𝑉 such that (𝑝, 𝑞) ∈ 𝐸 
8.   𝑇𝐸(𝑞, 𝑘, 𝑣) = min�𝑇𝐸(𝑞, 𝑘, 𝑣),𝑇𝐸(𝑝, 𝑘, 𝑣) +

𝑇𝐼𝐸(𝑝, 𝑞, 𝑘, 𝑣)� 
9. end for 
10. end while 



 

(Eqn. (17)). However, the interactions between versions 
impose additional constraints that event times have to 
satisfy. These constraints can be considered as ‘deadlines’ 
determined by the propagation of next versions of the data 
item. Data item (𝑘, 𝑣) is successfully delivered to node 𝑗 
only if two deadline conditions are met: 

1) Version 𝑣 can be successfully received at time 
𝑇𝐸(𝑗, 𝑘, 𝑣), only if none of the later data item ver-
sions has already arrived to node 𝑗 before event 
time 𝑇𝐸(𝑗, 𝑘, 𝑣): 

 for all 𝑛 ∈ ℕ,𝑇𝐸(𝑗, 𝑘, 𝑣) < 𝑇𝐸(𝑗, 𝑘, 𝑣 + 𝑛) (19) 

2) Version 𝑣 can be successfully transmitted from in-
fected neighbor node 𝑖 at time 𝑇𝐸(𝑗, 𝑘, 𝑣), only if prior to 
that no newer version of the item has already arrived to 
node 𝑖 (because a new version causes the old one to be 
removed): 

for all 𝑛 ∈ ℕ, (𝑖, 𝑗) ∈ 𝐸,𝑇𝐸(𝑗, 𝑘, 𝑣) < 𝑇𝐸(𝑗, 𝑘, 𝑣 + 𝑛) (20) 

Reversed version order analysis provides that the pre-
vious conditions can be easily evaluated. For each node 𝑗, 
the latest delivery time (deadline) for data item (𝑘, 𝑣), 
𝑇𝐿(𝑗, 𝑘, 𝑣) is defined as the earliest delivery time of any 
later data item version up to 𝑁𝑠𝑚𝑝, the number of versions 
simulated: 

𝑇𝐿(𝑗, 𝑘, 𝑣) = min�𝑇𝐸(𝑗, 𝑘,𝑛)�𝑣 < 𝑛 < 𝑁𝑠𝑚𝑝� (21) 

The list of latest delivery times can be updated easily 
with 𝒪(1) complexity. Each time a graph instance 
𝐺𝑆�𝑉,𝐸,𝐷(𝑘, 𝑣)� is analyzed, the latest delivery times are 
updated with new information. Based on Eqn. (21), it 
easily follows that: 

𝑇𝐿(𝑗, 𝑘, 𝑣 − 1) = min�𝑇𝐸(𝑗, 𝑘, 𝑣),𝑇𝐿(𝑗, 𝑘, 𝑣)� (22) 

Considering constraints (19) and (20), the set of fixed-
point equations describing event times can be written as: 
𝑇𝐸(𝑗, 𝑘, 𝑣) = 𝑇𝑆(𝑘, 𝑣) 𝑗 = 𝑘
𝑇𝐸(𝑗, 𝑘, 𝑣) = min

𝑖 𝑠.𝑡.(𝑖,𝑗)∈𝐸
𝑇𝐸(𝑖, 𝑘, 𝑣) + 𝑇𝐼𝐸∗ (𝑖, 𝑗, 𝑘, 𝑣) 𝑗 ≠ 𝑘 (23) 

where the inter-event times are modified to include dead-
lines imposed by propagation of the later data item ver-
sions: 

𝑇𝐼𝐸∗ (𝑖, 𝑗, 𝑘, 𝑣) = �𝑇𝐼𝐸(𝑖, 𝑗, 𝑘, 𝑣) 𝐶1 and 𝐶2
∞ otherwise

 (24) 

where conditions 𝐶1 and 𝐶2 are defined as follows. 
𝐶1:   𝑇𝐸(𝑖, 𝑘, 𝑣) + 𝑇𝐼𝐸(𝑖, 𝑗, 𝑘, 𝑣) < 𝑇𝐿(𝑗, 𝑘, 𝑣)
𝐶2:   𝑇𝐸(𝑖, 𝑘, 𝑣) + 𝑇𝐼𝐸(𝑖, 𝑗, 𝑘, 𝑣) < 𝑇𝐿(𝑖, 𝑘,𝑣) 

In case one or both of the deadline constraints 𝐶1 and 𝐶2 
cannot be met, the inter-event time 𝑇𝐼𝐸∗ (𝑖, 𝑗, 𝑘, 𝑣) is defined 
to be infinity, i.e., the data item cannot be delivered to 
node 𝑗 via node 𝑖. As a consequence, in the case that there 
is no neighbor of node 𝑗 for which both conditions are 
met, data item (𝑘, 𝑣) is never delivered to node 𝑗 and the 
corresponding event time 𝑇𝐸(𝑗, 𝑘, 𝑣) is infinite. 

The solution for the set of fixed-point equations of 
Eqn. (23) is calculated by incorporating deadline con-
straints into the MC algorithm of Figure 8. The modified 
pseudo-code which performs dynamic event-list calcula-
tion taking into account interactions between items is 
given in Figure 9. 

 
Figure 9. Modified MC pseudo-code. 

The simulation process consists of 𝑁𝑠𝑚𝑝 executions of 
the modified MC algorithm (one for each graph in the 
stochastic ensemble). Propagation of data item versions is 
evaluated in reverse time order. Initially, the latest deliv-
ery time (deadline) list is set to be: 

 𝑇𝐿(𝑗, 𝑘, 𝑣) = ∞  for all 𝑗 (25) 

The modified MC algorithm uses this list to evaluate 
deadline constraints. After the algorithm is finished, the 
list is updated with the most recent results. The updated 
list is then used for the simulation of the preceding (in 
simulated time) data item version. The process of simula-
tion is shown in Figure 10. 

 
Figure 10. MC simulation. 

The simulation starts at some time in the future, and the 
initialization procedure assumes that there are no more 
data item versions generated after that moment. This 
means that data item �𝑘,𝑁𝑠𝑚𝑝�, which is evaluated first 
(and generated last) is successfully delivered to all nodes 
in the network. The metrics are calculated based on their 
definitions given in Section 4. 

Evaluating conditions 𝐶1 and 𝐶2 does not increase 
computational complexity of the MC algorithm, because 
updating the deadline list can be done with 𝒪(1) com-
plexity. Thus, algorithmic complexity of the modified MC 
algorithm remains the same: 𝒪(|𝐸| 𝑙𝑜𝑔|𝑉|). Note that this 
is the complexity per item version, while the total simula-
tion complexity is 𝒪�𝑁𝑠𝑚𝑝|𝐸| 𝑙𝑜𝑔|𝑉|�. 

In order to obtain statistically significant latency esti-
mation, propagation of a sufficiently large number of item 
versions has to be simulated. The metrics are obtained by 
averaging event times over a probabilistic ensemble of 
sampled graphs (Eqn. (18)). [31] shows that average 
shortest path distances in probabilistic graphs almost 
surely converge. Statistical significance of the obtained 
results is analyzed in Section 8. 

�L�(𝑘), R�(𝑘)� = 𝑀𝑒𝑡𝑟𝑖𝑐𝑠(𝐺𝑆, 𝑘)  
1. Initialize: 𝑇𝐿(𝑗, 𝑘, 𝑣) = ∞ for all 𝑗 ∈ 𝑉[𝐺𝑆] 
2. for 𝑣 = 𝑁𝑠𝑚𝑝 downto 1 do  
3.   [𝑇𝐸 ,𝑇𝐿] = 𝐸𝑣𝑒𝑛𝑡_𝑙𝑖𝑠𝑡(𝐺𝑆, 𝑘,𝑣,𝑇𝐿) 
4. end for 
5. Compute: L�(𝑘), R�(𝑘) /* Eqn. (5) */ 

[𝑇𝐸 ,𝑇𝐿] = 𝐸𝑣𝑒𝑛𝑡_𝑙𝑖𝑠𝑡(𝐺𝑆, 𝑘,𝑣,𝑇𝐿)  
1. Initialize: 𝑇𝐸(𝑖, 𝑘, 𝑣) = ∞, 𝑇𝐸(𝑘, 𝑘, 𝑣) = 𝑇𝑆(𝑘, 𝑣) 
2. 𝐼𝑁 = ∅ 
3. 𝑆𝑈 = 𝑉[𝐺𝑆] 
4. while 𝑆𝑈 ≠ ∅ do 
5.  𝑝 ← argmin𝑖∈𝑆𝑈 𝑇𝐸(𝑖, 𝑘, 𝑣) 
6.  𝐼𝑁 ← 𝐼𝑁 ∪ {𝑝}; 𝑆𝑈 ← 𝑆𝑈\{𝑝} 
7.  for each 𝑞 ∈ 𝑉 such that (𝑝, 𝑞) ∈ 𝐸 do 
8.   if 𝐶1 and 𝐶2 then 
9.    𝑇𝐼𝐸∗ (𝑝, 𝑞, 𝑘, 𝑣) = 𝑇𝐼𝐸(𝑝, 𝑞, 𝑘, 𝑣) 
10.   else  
11.    𝑇𝐼𝐸∗ (𝑝, 𝑞, 𝑘, 𝑣) = ∞ 
12.   end if 
13.  𝑇𝐸(𝑞, 𝑘, 𝑣) = min�𝑇𝐸(𝑞, 𝑘, 𝑣),𝑇𝐸(𝑝, 𝑘,𝑣) +

𝑇𝐼𝐸∗ (𝑝, 𝑞, 𝑘, 𝑣)� 
14.   𝑇𝐿(𝑞,𝑘, 𝑣 − 1) = min�𝑇𝐸(𝑞, 𝑘, 𝑣),𝑇𝐿(𝑞,𝑘, 𝑣)� 
15.  end for 
16. end while 



7. STRATIFICATION-BASED PERFORMANCE 
ESTIMATION 
MC partial simulation provides a fast way to evaluate 

propagation properties of a data item (from a single 
source). The performance of the complete system can be 
obtained by performing one MC simulation for each data 
item key (i.e., for each source node) in the network, in 
which case the evaluation duration is proportional to the 
number of keys. However, a good estimation of the net-
work properties can be obtained by analyzing only a sub-
set 𝑆 ⊆ 𝐾 of data item keys and extrapolating the results. 
Obviously, the accuracy of such estimation depends on 
the right selection of the subset 𝑆. 

In statistics, stratification is the process of dividing 
members of a population into homogeneous subgroups, 
strata, before sampling. We use a similar approach in our 
estimation method. A subset of data item keys is selected 
according to the location of their source node. We observe 
that data items originating at nodes with similar topologi-
cal properties exhibit similar propagation patterns. We 
show that the so-called closeness centrality metric pro-
vides an accurate and efficient prediction of both latency 
and reliability in GWSN. 

7.1 Stratification 
The stratification goal is to select a subset 𝑆 of data 

item keys, and to estimate network metric 𝑀�  based on 
only the elements of the subset. The general idea of the 
proposed stratification method for performance evaluation 
is illustrated in Figure 11. For each data item, we calculate 
features, which correlate with the performance of interest 
of that data item. In the case of gossiping, performance is 
correlated to the node position in the graph and centrality 
measures can be used as the stratification feature (see 
Sections 7.2 and 8.4). Based on the calculated features, 
the subset 𝑆 of data items is selected. A good subset 
should contain data item keys covering the full range of 
features, and mimic the feature distribution of the com-
plete set. For each of the subset elements 𝑖, a MC partial 
simulation is performed and the point-to-multipoint metric 
𝑀(𝑖) is calculated (Eqn. (5)). Finally, the network metric 
𝑀�  is estimated based on the calculated point-to-multipoint 
metrics 𝑀(𝑖), 𝑖 ∈ 𝑆. An example of the subset selection 
and estimation function is given in Section 7.3, while the 
effect of the subset size is analyzed in Section 8.4. 

The computational complexity of the stratification 
method depends on the complexity of the feature calcula-
tion, the complexity of the individual data-item perfor-
mance evaluation, the complexity of the estimation func-
tion, and the size |𝑆| of the selected subset. Generally, the 
complexity of the feature calculation and the estimation is 
smaller than the complexity of the metric calculation. The 
MC simulation method proposed in Section 6 provides an 
efficient method for evaluating performance of individual 
data items. Neglecting the feature calculation and re-
calling that the complexity of MC is 𝒪�𝑁𝑠𝑚𝑝|𝐸| log|𝑉|�, 
the overall complexity of the network metric estimation is 
𝒪�|𝑆|𝑁𝑠𝑚𝑝|𝐸| log|𝑉|�. Hence, the size of the subset 𝑆 
provides a trade-off between the prediction accuracy and 
the simulation time. 

 

 

 
Figure 11. Performance evaluation based on stratification. 

7.2 Centrality measures 
Centrality measures are commonly used to analyze 

properties of social and biological networks [32,33,34]. 
The network is represented as a graph, where the edges in 
the graph represent certain types of relations between 
nodes. For example, in social networks, individuals that 
connect two otherwise not connected groups are important 
because of their ‘bridge’ position, and centrality measures 
are metrics assigned to vertices or edges of the graph to 
capture their relative importance. 

Centrality measures can capture different importance 
metrics in various topologies. Some of the commonly 
used centrality measures are: degree, betweenness, close-
ness, and eigenvector centrality [35]. In our work, we use 
closeness centrality which is known to reward nodes with 
better ability to access/spread gossiped information over 
the network [36]. It indicates how near a given node is to 
other nodes in the network (directly or indirectly). Our 
experiments show that this information has a strong corre-
lation with GWSN performance metrics (latency, reliabil-
ity, see Section 8.4). 

The centrality measure is calculated based on a 
weighted graph 𝐺𝐶(𝑉,𝐸, 𝑒) obtained from the SVGM. As 
before, 𝑉 and 𝐸 are the sets of vertices and edges of the 
WSN. The edge weight function 𝑒:𝐸 → 𝑅+ denotes the 
expected time necessary for node 𝑖 that has received a 
certain data item (𝑘, 𝑣) to deliver that data item to neigh-
bor node 𝑗. It is calculated as an expected value of the 
stochastic variable corresponding to that edge. In Sec-
tion 5.2., it was shown that the stochastic variables com-
prise two independent stochastic processes that are de-
scribed with geometric distributions (Eqn. (9) and (10)). 
In that case, the edge weight function 𝑒 for edge (𝑖, 𝑗) can 
be written as: 

 𝑒(𝑖, 𝑗) =
1

𝑝(𝑖, 𝑗) ⋅ 𝑝𝑠(𝑖, 𝑗, 𝑘, 𝑣) (26) 

The feature describing propagation properties of a certain 
data item is calculated as the closeness centrality measure 
of its source node. It is defined as the inverse of the sum 
of the lengths of the shortest paths to all other nodes in the 
network. Closeness centrality of some node 𝑖 is defined 
as: 

 𝐶𝐶(𝑖) = � � 𝑑(𝑖, 𝑗)
𝑗∈𝑉\{𝑖}

�

−1

 (27) 

where 𝑑(𝑖, 𝑗) is the shortest path distance between nodes 𝑖 
and 𝑗 in graph 𝐺𝐶(𝑉,𝐸, 𝑒) 

Centrality-based stratification can be applied success-
fully in all scenarios where the computation properties are 
homogeneous over the set of data item keys (e.g., temper-
ature and humidity measurements in agricultural are-
as [37] where all data items have the same importance). 
The assumption of homogeneous computation properties 
over the set of data item keys provides that edge weights 
in a graph 𝐺𝐶(𝑉,𝐸, 𝑒) are data invariant, i.e., 
𝑝𝑠(𝑖, 𝑗, 𝑘, 𝑣) = 𝑝𝑠(𝑖, 𝑗, 𝑘′, 𝑣′), for all 𝑖, 𝑗, 𝑘, 𝑘′, 𝑣, 𝑣′. Note 
that topological and communication properties need not 
be homogeneous. 



 

The stratification approach can be adapted to certain 
scenarios where computational properties are heterogene-
ous. In that case, the stratification procedure requires an 
additional step where data items are classified according 
to the computational specifics. The classification is trivial 
in a situation where an application defines a few data item 
classes (e.g., priority) and each data item is statically 
assigned to one of those classes. However, when the clas-
ses are dynamic, it may not be possible to efficiently im-
plement a stratification procedure. This kind of analysis is 
left for future work. 

7.3 Performance estimation  
The goal of centrality-based stratification is to deter-

mine a subset of data items such that properties of the 
complete set can be estimated accurately based only on 
the metrics calculated from the subset. According to the 
calculated features, the complete range of observed cen-
trality values is divided into 𝐼 smaller intervals (the stra-
ta), where 𝑁𝑖 is number of data items in stratum 𝑖. From 
each of these strata 𝑖, we select 𝑛(𝑖) data item keys, so 
that |𝑆| = ∑ 𝑛(𝑖)𝐼

𝑖=1 . Then, the network performance is 
estimated as the weighted average: 

 𝑀� = �𝐾𝑖 ⋅ 𝑀(𝑖)
𝑖∈𝑆

 (28) 

where 𝐾𝑖 is a coefficient describing the importance 
(weight) of the sampled metric 𝑀(𝑖), often the fraction of 
nodes in that stratum 𝑖. 

The importance coefficient of a data item key is pro-
portional to the size of the stratum from which it is select-
ed (i.e., the fraction of all nodes in stratum 𝑖, 𝑁𝑖/|𝑉|) and 
inversely proportional to the number of data items select-
ed from that stratum 𝑛(𝑖). Thus, we have that: 

 𝑀� = �
𝑁𝑖

𝑛(𝑖) ⋅ |𝑉| ⋅ 𝑀
(𝑖)

𝑖∈𝑆

 (29) 

We use equal-size strata, with one sample per stratum. We 
select a node with the median centrality value within the 
stratum. The results show that the proposed stratification 
method in combination with MC partial simulation pro-
vides adequate accuracy in short analysis time frames 
(Section 8.4). 

8. EXPERIMENTAL EVALUATION 
We performed an extensive set of experiments to ana-

lyze the proposed performance evaluation techniques. We 
use a real deployment and simulations performed at dif-
ferent levels of abstraction. The simulation length was 
chosen such that sufficient statistical significance is 
achieved. In Section 8.1, we provide details of the exper-
imental setup. The accuracy of the stochastic modeling is 
analyzed in Section 8.2, by comparing the MC method 
using the SVGM model to both low-level simulation and a 
real deployment. The speed of the MC method is assessed 
in Section 8.3, where the results of DE and MC simulation 
are compared. Finally, in Section 8.4 we analyze the accu-
racy and efficiency of the stratification method. 

8.1 Experimental setup 

8.1.1 Accuracy assessment of the MC partial simu-
lation using low-level simulation 

As our base of reference to study the accuracy of the 
modeling abstractions, we use a low-level simulation in 
MiXiM [21], providing full system simulation including 
packet processing, detailed protocol implementations 
(gossiping and MAC) and a path-loss channel model to 
determine success of radio communication. The speed of 
MiXiM simulation does not allow efficient exploration of 
large design spaces. However, the detailed models allow 
accurate assessment of the GWSN protocol stack and 
represent a good reference. 

8.1.2 Accuracy assessment of the MC partial simu-
lation using a real deployment 

Our SVGM model uses the average PRR to model ra-
dio behavior. A Bernoulli process with average PRR is 
often used to model the radio layer [26]; however, this 
abstracts from the dynamics in the radio channel. The 
path-loss channel model used in MiXiM simulations is 
also a Bernoulli process with average PPR, where the 
PRRs are computed based on distance between nodes. In 
order to evaluate the applicability of our MC method to 
realistic scenarios we evaluate it by comparison to a real 
deployment. 

8.1.3 Speed assessment of MC partial simulation 
We evaluate the speed gain of the MC partial gossip-

ing simulation against a full gossiping simulation imple-
mented as a standard discrete-event (DE) simulation. Such 
a DE simulation assumes message transmissions as basic 
events and uses a functional implementation of the gossip-
ing procedures – cache update and item selection – to 
accurately capture data item dissemination. To isolate the 
speed gain of the MC approach, we use the same stochas-
tic abstractions for data link and radio layers in both the 
DE and MC simulations. 

8.1.4 Accuracy assessment of the stratification 
method  

The stratification method simulates propagation prop-
erties of a small subset of data items and estimates the full 
system behavior based on those results. In order to esti-
mate the accuracy of this approach, we compare the re-
sults of a stratification-based method with results of full 
system simulation. 

8.1.5 Grid-like topologies used in simulations  
Simulation experiments are performed for different 

topologies and configurations. We consider rectangular 
topologies consisting of different combinations of rectan-
gular parts. Such topologies correspond to some realistic 
scenarios, e.g., when monitoring buildings or out-door 
fields. Within the area, nodes are positioned in a grid-like 
structure with an average spacing 𝑅. The spacing 𝑅 was 
chosen according to the transmission range of nodes; in 
case of the minimal transmission power, two nodes at 
distance 𝑅 can still communicate. We refer to the struc-
ture as grid-like, because each node is allowed to drift 
randomly from the grid position. The maximal drift value 



is chosen to be 0.4𝑅. The drift is selected uniformly and 
independently for each axis. A network is heterogeneous 
and consists of three types of nodes with different trans-
mission power settings (-6dB,-12dB,-18dB). Such power 
settings roughly correspond to the transmission ranges 𝑅, 
𝑅√2 (connecting nodes on the grid diagonals) and 2𝑅, 
respectively (using a path loss model with exponent 4). 
An example of a heterogeneous grid-like topology is giv-
en in Figure 12. Edges in the topology graph indicate 
whether nodes are in communication range. 

 
Figure 12. Grid-like network deployment. 

8.1.6 Statistical significance of simulation results 
The statistical significance of all simulation results is 

estimated using established techniques for estimation of 
long-run sample averages [38,39]. Each simulation con-
sists of a certain number 𝑁𝑠𝑟  of subruns, where each 
subrun includes the propagation of 𝑁𝑠𝑖 versions of an item 
and thus the total number of simulated item versions is 
𝑁𝑠𝑚𝑝 = 𝑁𝑠𝑟 ⋅ 𝑁𝑠𝑖 . In each subrun 𝑧 the metrics of interest 
𝑀�(𝑧), latency and reliability in our case, are calculated. 
After each subrun, confidence intervals of 95% and rela-
tive margins of error (half the width of the confidence 
interval) are calculated. 

The long-run sample averages method assumes that 
the individual samples are independent. These samples are 
taken from separate subruns, which should be long 
enough to make their results sufficiently independent. 
Following a general rule of thumb, we adopted a subrun 
size such that samples from 𝑁𝑠𝑖 = 100 data items are 
collected. Because only the propagation of the last few 
data items from the subrun depends on the propagation of 
the first few data items from the next subrun (a new data 
item can overtake an old one), this subrun size results in 
only a small dependence between two subsequent 
subruns. 

The number of subruns has to be such that sufficient 
statistical significance is achieved. According to [39], a 
confidence interval of 𝛼 requires the number of subruns 
𝑁𝑠𝑟 > (𝛼 + 1) (1 − 𝛼)⁄ . According to this guideline and 
taking 𝛼 = 0.95, we choose our number of subruns 
𝑁𝑠𝑟 = 39  

The total number of generated item versions 𝑁𝑠𝑚𝑝 =
3900 provides a sufficient statistical significance, i.e., 
relative margins of error on the 95% confidence interval 
that are well below the desired value of 5%. 

8.1.7 Monte Carlo sampling – approximation of 
weak links  

The Monte Carlo sampling of SVGM described in 
Section 5.2 needs to sample the intervals between packet 
transmissions. The required number of random samples 
describing the intervals between transmissions of a data 
item from some node corresponds to the maximal number 
of transmissions required to achieve success over all links 
originating at that node (Eqn. (11)). Note that the required 
number of transmissions can be arbitrarily large. Especial-
ly for weak links it can be rather high. In practice, provid-
ed that there is a sufficient number of good links, the 
effect of weak links on the system performance is negligi-
ble. In order to reduce simulation time, we could either 
remove weak links from the topology, or approximate 
their role in the topology based on a small number of 
random samples. We choose the approximation approach 
and impose an upper-bound on the number of random 
samples that are generated to describe the intervals be-
tween transmissions. When for some link more samples 
are required (Eqn. (12)), we consider the given link as a 
weak link. The weight of a weak link is approximated by 
reusing random samples, i.e., the missing random samples 
in Eqn. (12) are taken from a set of already generated 
samples. Our experimental results have shown that, in 
simulated topologies, the number of random samples 
describing the intervals between transmissions can be 
bounded to 10, without noticeable accuracy loss (0.1% 
for the statistical significance specified in Section 8.1.6). 

8.1.8 Simulation platform 
All our simulation experiments were run on a standard 

laptop with the CPU at 2GHz and with 2GB of RAM. 

8.2 Accuracy of the stochastic abstractions in SVGM 
In Section 8.2.1, we assess the accuracy of our sto-

chastic models used in the MC method by comparison 
with low-level simulation. The radio behavior in a real 
deployment and the accuracy loss caused by using aver-
age PRR as a radio model are analyzed in Section 8.2.2. 

8.2.1 Comparison with low-level simulation 
The MiXiM simulation that we use as a reference sim-

ulates the full protocol stack, including packet processing, 
MAC protocol and radio channel (using a path-loss chan-
nel model to determine success of communication). The 
simulation speed of the MiXiM framework allows proto-
col design and system analysis; however, it is not suffi-
ciently fast for DSE, not allowing for large sets of simula-
tions within a reasonable time. Considering the simulation 
times, our experiments were limited to relatively small 
grid topologies, with |𝑉| ∈ {25,36,49,64} nodes. The 
sampling period is chosen to be 𝑇𝑠𝑚𝑝 = ⌊|𝑉| 2⁄ ⌋, which is 
a value that results in significant interaction between data 
item versions. 

The differences between results of MC simulation and 
MiXiM simulation are shown as absolute relative errors in 
Figure 13. Each point in the graph represents the differ-
ence between the outcomes of one MC simulation run and 
one MiXiM simulation run for the given topology. The 
MC simulation results are close to the MiXiM results, 
showing at most 1.2% difference.  
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Figure 13. Accuracy of prediction, MC vs. MiXiM. 

Table I compares the running times of the two simula-
tion approaches. MiXiM simulations have simulation 
times in the order of minutes to hours, whereas our MC 
simulations do not take more than half a second. Strongly 
reduced simulation times are the result of the applied 
stochastic abstractions instead of the detailed functional 
models. 
Table I. Running times for MiXiM and MC simulation (per subrun). 

Sim/Grid 5x5 6x6 7x7 8x8 
MiXiM [min] 26 52 94 153 
MC [s] 0.03 0.05 0.08 0.16 

 
From the experimental results we observe a significant 

speed gain from the stochastic abstractions, with a rela-
tively small loss in accuracy. This is a good indication that 
stochastic modeling is the right approach for exploration 
of large design spaces in GWSN. 

8.2.2 Comparison with a real deployment  
All models we use, including the detailed MiXiM 

models, model the quality of the communication links in a 
WSN using, among other things, packet reception ratio, 
describing the spatially and temporally independent prob-
ability of successful communication over the radio chan-
nel. In this way, the average link quality is captured, while 
abstracting from temporal fluctuations and potential spa-
tial correlations. In this subsection, by comparison of 
model results and real deployment measurements, we 
assess the loss in accuracy as a consequence of the chosen 
abstractions. 

 
Figure 14. WSN deployment in a home indoor environment (2nd 
floor) [courtesy: Roessingh Research and Development] 

The experiment uses an actual deployment of our case 
study of Section 3. The experiment is performed by de-
ploying 57 nodes inside a fully furnished 2-floor apart-
ment (see Figure 14), during a 10-day period and in pres-

ence of a human being performing daily activities. The 
nodes were mostly static, although some of the nodes 
exhibited limited mobility (e.g., nodes attached to doors, 
chairs, and home appliances). The experiment was de-
signed to analyze the effects of short- and long-term fluc-
tuations in the radio channel. 

 
Figure 15. Error of an SVGM based performance evaluation 
(home indoor environment)  

The effects of short-term radio fluctuations on the 
overall system-model accuracy are analyzed by compar-
ing the results from the real deployment to the results 
obtained by the MC method using a radio model which is 
calibrated with the deployment measurements. While the 
real deployment exhibits short term fluctuations, the mod-
el uses a constant model with the same behavior on aver-
age. The experiment is divided in 1 hour time intervals, a 
period in which, in our experiment, the environment does 
not change significantly. For each 1 hour interval the 
average PRRs are calculated and the radio model in the 
SVGM is calibrated. The short-term fluctuations are most 
prominent in links that are not very strong and not very 
weak either. From the result given in Figure 15, showing 
the estimation accuracy for each of the time intervals, it 
can be observed that using the average PRR as a radio 
model, thus abstracting from short-term temporal fluctua-
tions in the radio properties, does not cost much in terms 
of accuracy (with the error being less than 4% in all simu-
lated time intervals, with a mean absolute error of 1%). 

Ideally, we would like to perform measurements for a 
small period, then calibrate our simulator with the pa-
rameters extracted from the measured data and then use 
the calibrated simulator to estimate performance for arbi-
trary periods in the future. However, even in networks 
with static nodes, the environment changes (time of day, 
temperature and humidity, the level of human activity, 
movement of furniture, presence of various sources of 
electromagnetic interference, etc) leading to long-term 
fluctuations in radio properties. The effects of long-term 
changes in the environment are analyzed by comparing 
the metrics obtained from a time interval of data and met-
rics obtained from the model calibrated with the PRRs 
corresponding to an interval of data measured at a differ-
ent time of day. Our experimental results show that the 
maximal estimation error increases from 4% to 12% in 
that case (calculated over all pairs of one hour intervals). 
Analysis of the largest deviations shows that these are 
caused by movement of furniture, causing structural 
changes in the network topology. 

An illustration of long-term fluctuations in the radio 
channel is given in Figure 16. The PRRs are averaged 
over hourly intervals and the measurements during a 24h 
period are shown in the figure. The results are plotted for 
all links originating from a single node. We show them as 
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box-plot diagrams. For each box, the central line repre-
sents the median and the edges of the box are the 25 and 
75 percentiles. The dashed line denotes the range includ-
ing all data points not considered outliers (99.3% cover-
age assuming the data is normally distributed); data points 
outside this range are plotted individually and denoted 
with crosses. About two thirds of the links exhibit only 
small fluctuations (they are either good or bad links). 
However, the links in the gray area (almost one third of 
the links) change significantly over time. The reason is 
that these links are more sensitive to environmental 
changes, such as the presence of a person or movement of 
furniture. The changes in these links do not affect network 
operation, since, in our deployment, nodes still have a 
sufficient number of stable links; however the perfor-
mance metrics change. 

 
Figure 16. Long-term fluctuations in the radio channel 

In conclusion, the experiment with the real deploy-
ment shows that the use of PRRs to abstract from radio 
behavior is accurate as long as there are no (or only very 
limited) structural changes in the network or its environ-
ment. For structural changes in environment or topology, 
we need either a periodic recalibration of PRRs, or a mod-
el that can capture those changes (e.g., Markov models as 
described in [6]). 

8.3 MC simulation  
The MC and DE simulations we perform use the same 

abstractions to model the communication properties of the 
system (data link and radio layer), but the evaluation of 
those abstractions differs. The simulated events in the case 
of DE simulation are related to the packet transmissions, 
and are evaluated in each communication round. On the 
other hand, the events in MC simulation represent the 
reception of a new version of a data item by a node for the 
first time. In this case the abstractions are used to sample 
the time between events (according to Eqn. (12)) and 
compute tentative event times (Section 6). Besides that, 
MC simulation does not simulate the gossiping protocol in 
a discrete-event fashion, but rather uses a combination of 
Monte Carlo simulation and shortest-path analysis to 
capture the gossiping behavior. Both DE and MC simula-
tions capture the same stochastic processes and in the 
limit the metrics converge almost surely to the same val-
ue. In this section, first, we experimentally verify this 
proposition, then we compare the speed of the MC and 
DE simulations. 

8.3.1 Accuracy 
Experiments are performed for five different network 

sizes |𝑉| ∈ {83,155,251,371,515}. The number of gener-
ated random topologies is 240 per network size (1200 in 
total). The radio model is a probabilistic unit disk radio 
model [5], with probabilities selected from uniform distri-
bution 𝑈(0.1,1). Experiments are performed for two sam-

pling periods, both chosen to provide significant interac-
tion between data items, 𝑇𝑠𝑚𝑝 = ⌊|𝑉| 2⁄ ⌋ and 𝑇𝑠𝑚𝑝 = |𝑉|. 

MC simulation is performed for each data item sepa-
rately and results are compared with the DE simulation. 
Estimation deviations are calculated as an average value 
of deviations of all point-to-multipoint metrics, for each of 
the network sizes. The box-plots presented in Figure 17 
show the obtained results. The estimation deviation is 
below 1% in all simulated cases, while the deviation me-
dian and mean are close to 0%. This indicates that we 
have a random error with a small variation and almost no 
bias. 

Although in the limit both simulations provide the 
same result, the underlying modeling and simulation pro-
cesses are not entirely the same. For example, MC simula-
tion does not suffer from the transient period at the simu-
lation startup when selection probabilities are not yet 
stable because caches are not yet fully filled, but it does 
suffer from some transient behavior at the end, because it 
assumes that the last sampled data items arrive at every 
node. Transient periods affect only a few data items (first 
and last), and the effect is negligible in our experiments 
due to the large number of simulated data items (3900 for 
each source node). 

     

 
Figure 17. Deviation between MC and DE simulation: (top) 
latency; (bottom) reliability. 

8.3.2 Speed 
In order to illustrate the speed gain of the MC simula-

tion, we compare the running times of MC and DE simu-
lations (Table II). As expected, MC simulation provides 
short average times necessary to estimate propagation of a 
single data item (only 24.4ms for a subrun of 100 data 
items in the network of 515 nodes). DE simulation pro-
vides no benefits in a situation when dissemination prop-
erties of data items from a single source are evaluated; it 
simultaneously simulates propagation of data items from 
all sources. For comparison, in Table II, besides running 
times of DE and MC simulations, we present the “total” 
MC simulation time as the time required to perform simu-
lation for data items from all source nodes (|𝑉| ⋅ 𝑇𝑀𝐶). 



 

Table II. Running times (in seconds) for DE and MC simulations. 

Sim/Size Tsmp 83 155 251 371 515 

TDE [s] |V|/2 0.46 2.33 8.14 22.3 45.6 
|V| 0.87 4.24 14.7 39.3 87.1 

|V|⋅TMC [s] 
|V|/2 0.21 0.72 1.71 3.95 7.32 
|V| 0.31 1.11 2.99 6.47 12.6 

TMC [s] 
|V|/2 0.003 0.005 0.007 0.011 0.014 
|V| 0.005 0.007 0.012 0.017 0.024 

The results show that even in the case when all data 
items are simulated, MC simulation achieves shorter run-
ning times than DE simulation (2-3 times for 83 nodes 
and about 6-7 times for 515 nodes). This may look coun-
ter-intuitive considering the fact that events in DE simula-
tion inherently contribute to the analysis for multiple data 
items, while in the MC simulation for each data item a 
new stochastic ensemble is selected. There are several 
factors that contribute to the observed behavior: DE simu-
lation simulates data items from all sources in parallel and 
uses a functional implementation of the gossiping protocol 
(i.e., the cache update and the item selection procedures) 
while the MC simulation is a partial system simulation 
that extracts dissemination properties of a single data item 
from the shortest-path analysis, thus avoiding the com-
plexity of the protocol implementation; events in DE 
simulation are at a finer granularity than in MC simulation 
and although in MC simulation all data items are simulat-
ed separately the total number of events turns out to be 
similar. 

The total number of events and thus the simulation 
time depends on the data item sampling period. This de-
pendency is analyzed through the experiments performed 
for the two values of the sampling period (𝑇𝑠𝑚𝑝 = ⌊|𝑉|/2⌋ 
and 𝑇𝑠𝑚𝑝 = |𝑉|). Based on the results presented in Ta-
ble II we can observe the following: 

1) The running time of DE simulation is almost direct-
ly proportional to the sampling period. This is the ex-
pected result since the number of events in DE simulation 
is proportional to the number of communication rounds. 
For a fixed number of simulated data item versions 𝑁𝑠𝑚𝑝, 
the number of simulated rounds is directly proportional to 
the sampling period, 𝑁𝑠𝑚𝑝 ⋅ 𝑇𝑠𝑚𝑝. 

2) The running time of the MC simulation also de-
pends on the sampling period. However, this dependency 
is more complex. An event in the MC algorithm denotes a 
situation when a node receives a data item for the first 
time, and thus the total simulation time is proportional to 
the number of data-item arrivals. A smaller sampling 
period implies a more significant interaction between data 
item versions and thus lowers the number of nodes that 
receive that specific version of the data item (i.e., reliabil-
ity); consequently, it lowers the number of events and the 
simulation time. On the other hand, for all sampling peri-
ods greater than a certain value, system reliability is close 
to one and the number of events does not change. 

The sampling period used in the experiments provides 
a reliability of about 40% (𝑇𝑠𝑚𝑝 = ⌊|𝑉|/2⌋) and about 
65% (𝑇𝑠𝑚𝑝 = |𝑉|). It is not difficult to conclude that the 
speed advantage of MC simulation will further increase 
with an increase in the sampling period (more drastically 
once the reliability becomes close to one). 

8.4 Stratification-based performance analysis 
The performance of the stratification approach is ana-

lyzed through the same set of 1200 experiments used in 
the previous subsection. Recall that topologies are irregu-
lar and heterogeneous, two aspects that might be challeng-
ing for stratification. 

Our stratification method is based on closeness cen-
trality. We use equal-size strata, with one subset sample 
per stratum. From each stratum, a node with the median 
value within the stratum is selected as its representative. 
From the selected nodes, network metrics are estimated 
(Eqn. (29)). Four different subset sizes (number of strata) 
are analyzed, containing 5, 10, 15, and 20 data items 
(nodes). 

The time required for the centrality-based stratification 
is directly proportional to the number of selected data 
items. For each data item in the subset, one instance of 
MC simulation has to be performed. Compared to the MC 
running time, the time required to compute centrality 
metrics is negligible. The running times per data item of 
MC simulation have been given in Table II. The accuracy 
of the centrality-based stratification is evaluated by com-
parison with the results of the full system simulation. It is 
presented using box-plots of estimation errors for network 
latency and network reliability in Figure 18. Results are 
sorted horizontally according to both network size and 
subset size as follows. The first four results are for net-
work size 83, and subset sizes 5, 10, 15, and 20; the last 
four results are for network size 515, and subset sizes 5, 
10, 15, and 20 (so ‘a1’ denotes the combination of net-
work size 83 and subset size 5, while ‘e4’ denotes net-
work size 515 and subset size 20). 

 

 
Figure 18. Accuracy of stratification. 

As an expected trade-off, there is a general trend that 
the estimation error of the stratification approach decreas-
es with an increase in the number of elements in the se-
lected subset. Figure 18 shows that even with only 5 sam-
ples (a selected subset of 5 data items), the estimation 
errors are below 5% for latency and below 6% for relia-
bility in all simulated topologies (the mean error is 1.5% 
for latency and 2.5% for reliability). 



 

 
Figure 19. Correlation between closeness and point-to-
multipoint (P2M) metrics (random topology with 371 nodes). 

Figure 19 illustrates correlation between the closeness 
centrality measure and performance metrics latency and 
reliability. It confirms our assumption about the good 
correlation between centrality values and the metrics. 
Closeness centrality correlates slightly better with point-
to-multipoint latency than with reliability, which is the 
main reason for the observed difference in the estimation 
accuracy. 

It is interesting to observe that an increase in network 
size does not increase the estimation error, and the same 
number of strata provides the same (or even a better) 
accuracy with an increase in the network size (Figure 18). 
It may seem counter-intuitive that estimation based on a 
smaller amount of information leads to the same or an 
improved accuracy. This can be explained however by the 
tendency of gossiping to even out the point-to-multipoint 
metrics for nodes that share similar topological properties. 
This effect is stronger with an increase in network size 
when more nodes have similar topological properties, and 
it compensates for the decrease in the relative amount of 
available information in the stratification method. 

Finally, the quality of the centrality-based stratifica-
tion strategy is evaluated by comparing it to a random 
stratification strategy. The number of randomly selected 
data items has been chosen the same as for centrality-
based stratification, i.e., 5, 10, 15, and 20. For each simu-
lated topology and each subset size, the random stratifica-
tion procedure is performed 100 times. The results are 
given in Figure 20. If we compare results presented in 
Figures 18 and 20 it can be seen that the overall accuracy 
of centrality-based stratification is noticeably better than 
the accuracy of random stratification. The gain obtained 
by centrality-based stratification is larger for latency than 
for reliability. This is not unexpected since correlation 
between latency and centrality is stronger than correlation 
between reliability and centrality. 

  

 
Figure 20. Accuracy of estimation based on randomly selected 
data items. 

We may conclude that centrality-based stratification in 
combination with MC simulations provides a fast and 
accurate way to analyze system-level properties of GWSN 
and is sufficiently fast to support the exploration of large 
design spaces. 

9. CONCLUSION 
This paper presents an integral modeling approach for 

gossip-based WSN (GWSN) that allows fast analysis of 
system-level properties and is suitable for DSE (Design-
Space Exploration). Two metrics are evaluated: latency 
and reliability. In case other metrics, such as for example 
energy consumption, vary due to the stochastic nature of a 
WSN, we expect our method to be extensible to such 
metrics, capturing for example network lifetime as well. 
An experiment with a real deployment shows that the 
chosen models may be simple, yet capture relevant behav-
ior well. The stochastic abstraction of the radio model 
requires calibration, either directly via a prototype de-
ployment or indirectly via an analytic radio model. Con-
sidering results with respect to the accuracy of analytic 
radio models reported in [14,5,27], the latter appears to be 
a promising approach. 

The core of our method is a Monte Carlo (MC) simu-
lation technique to evaluate the propagation of an individ-
ual data item in the network; this provides significant 
speedup in case a complete system simulation is not re-
quired. Instead of simulating protocols and interactions 
between different data items, the MC approach extracts 
dissemination properties of a single data item from a 
shortest-path abstraction. The short running times of MC 
simulation make it the preferred solution in all situations 
when individual point-to-(multi)point metrics have to be 
obtained in a fast but accurate way. Examples are when 
one is interested in the performance of only a subset of 
nodes or data items, such as the latency for high-priority 
data samples, or in worst-case performance aspects such 
as the longest delay in the network. Although MC is tar-
geted to partial system simulation, it turns out to also be 
faster than standard discrete-event simulation for full-
system simulation. 
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Building on the MC simulation technique, we pro-
posed a centrality-based stratification method that esti-
mates the complete network performance through the 
simulation of only a representative subset of data items. 
Experimental results show that a small set of source nodes 
selected based on closeness centrality provides good per-
formance estimation. The accuracy depends on the num-
ber of selected source nodes but increase in accuracy is 
not linear; the increase levels off with the number of se-
lected nodes. 

The applicability of the simulation techniques pro-
posed in this paper depends on the possibility to describe 
random effects concisely and accurately by stochastic 
variables. The modular approach proposed in this paper 
makes the models easily tunable for changes in system 
parts, including changes in the application running on top 
of the gossiping. In future work, we plan to explore the 
possibility for capturing dynamic aspects such as structur-
al time-dependent link quality variations, interference, 
moving obstacles, and node mobility. Our approach may 
be compatible, for example, with the approach to capture 
link variations through Markov models as described in 
[6]. In parallel, we plan to develop DSE techniques such 
as those of [14,4] based on our models. 

 
List of main symbols 

𝑇𝑠𝑚𝑝 Sampling period 
(𝑘, 𝑣) Data item with key k and version v 
𝐶𝑖(𝑘, 𝑡) Entry of the cache of node i corresponding to 

data item k at time t 
𝑇𝐸(𝑖, 𝑘, 𝑣) Arrival time of data item (k, v) at node i 
𝐷𝑖(𝑘, 𝑣) Delivery time of data item (k, v) at node i 
𝑈𝑖(𝑘, 𝑣) Delivery success of item (k, v) at node i 
𝐿𝑖(𝑘) Point-to-point latency between source k and 

destination i 
𝐿𝐷(𝑘) Point-to-multipoint latency between source k 

and set D of destinations 
𝐿𝐾,𝐷 Network latency between set K of sources and 

set D of destinations 
𝑅𝑖(𝑘) Point-to-point reliability between source k and 

destination i 
𝑅𝐷(𝑘) Point-to-multipoint reliability between source k 

and set D of destinations 
𝑅𝐾,𝐷 Network reliability between set K of sources 

and set D of destinations 
𝐺𝑆𝑉(𝑉,𝐸,𝑋) Stochastic-variable graph with nodes V of the 

gossiping network, edges E of links in the net-
work and stochastic edge weights X 

𝑝𝑟 Packet reception ratio 
𝑝𝑚𝑎𝑐 MAC success rate 
𝑝𝑠 Selection probability  

𝑋𝑘,𝑣(𝑖, 𝑗) Stochastic propagation delay of data item(k, v) 
over link  (i, j) 

𝑁𝑇𝑥(𝑖, 𝑗, 𝑘, 𝑣) Number of transmissions of data item (k, v) 
from node i to node j until first success 

𝑇𝑇𝑥(𝑚, 𝑖, 𝑘, 𝑣) Length of the m-th intertransmission interval 
for data item (k, v) at node i 

𝑁𝑚𝑎𝑥 Number of transmissions until the data item is 
delivered to all neighbors 

𝑁𝑆 Number of data items that are gossiped by each 
node in one round 

𝐺𝑆 Sampled graph obtained from a stochastic 

variable graph 
𝑇𝐼𝐸(𝑖, 𝑗,𝑘, 𝑣) Inter-event time, the time between arrival of 

item (k, v) to node i and successful delivery to 
node j 

𝑇𝑆(𝑘, 𝑣) Sampling time of item (k, v) 
𝑮𝑘 Stochastic ensemble of weighted graphs sam-

pled from the stochastic variable graph for 
source k for all versions 

𝑇𝐿(𝑖, 𝑘,𝑣) Latest delivery time (deadline before being 
overtaken by later version) for data item (k, v) 
at node i 

𝐶𝐶(𝑖) Closeness centrality of node i  
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