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Abstract—Time-Sensitive Networking (TSN) is a promising
solution for the next generation in-vehicle networks. To enable
innovations in adaptability, there is a strong trend to integrate
TSN with Software-Defined Networking (SDN). Software-defined
TSN requires fast routing algorithms that guarantee the Worst-
Case End-to-End Delay (WCED) of the Audio Video Bridging
(AVB) flows. However, current AVB flow routing algorithms
execute WCED analysis for an exponential amount of route
candidates, which is not feasible at run-time. Current WCED
analysis of the AVB flows depends on the specific flow setup of
other traffic classes. When high-priority flows change, low-priority
flows must be adjusted as well to maintain deadline guarantees.
In this paper, we propose a per-class flow management scheme
to enable run-time routing of the AVB flows. Our composable
analysis computes a formal WCED bound of the AVB flows. It does
not rely on the flow setup of other traffic classes. So, the WCED
and routes can be computed for each traffic class independently
and in parallel. Based on the analysis, we develop a fast heuristic
algorithm to incrementally route the AVB flows with guaranteed
deadlines. Our experiments demonstrate that, compared to the
existing solutions, the composable analysis is 2.6x faster. The cost
is that the WCED bound can be up to 31% higher. When given
a similar run-time as existing solutions, the proposed routing
algorithm can set up 1.6x more flows. The average time to set
up one flow is within 0.14s.

Index Terms—In-Vehicle TSN, SDN, WCED, Routing.

I. INTRODUCTION

Since the proliferation of automotive applications, Time-
Sensitive Networking (TSN) [1] based on the Ethernet stan-
dards has emerged as a promising solution for high bandwidth
in-vehicle networks. TSN divides mixed-criticality traffic into
traffic classes: Time-Triggered (TT) traffic for safety-critical
control data, Audio Video Bridging (AVB) traffic for Worst-
Case End-to-End Delay (WCED) guaranteed streaming data,
and Best Effort (BE) traffic for non-real-time data. AVB flows
are further divided into two Stream Reservation (SR) classes
according to the service requirement: class A (SR-A) for delay-
sensitive audio data and class B (SR-B) for high-bandwidth
video data. TSN applies Time Aware Shaping (TAS) [2] and
Credit Based Shaping (CBS) [3] in addition to the class-based
queuing to ensure zero frame losses and bounded latency.

An emerging trend of today’s TSN is Software-Defined Net-
working (SDN) whose basic approach is to simplify switches
into forwarding devices and manage them through logically
centralized network control [4]. For in-vehicle networks, SDN
provides benefits regarding run-time flow setup which is es-
sential for adaptive network management and fault mitigation.
Time-Sensitive Software-Defined Networking (TSSDN) [4] and
TSNu [5] have demonstrated successful integration of the TSN
data plane and the SDN management protocols.

The controllers of software-defined TSN must route AVB
flows with end-to-end deadline guarantees. Although routing in
real-time SDN is a widely researched topic, AVB flows needs
different approaches to consider the delays caused by TAS and
CBS. In conventional SDN, the link delay of a flow is usually
modeled as a constant weight of the link [6], [7]. Instead, the
link delay of an AVB flow under traffic shaping depends on
other flows routed on the same link. It also depends on the jitter
of frame arrival, which is caused by the variation of blocking
scenarios on upstream links. Thus, the WCED of the AVB flows
must be computed by specific analyses [8]–[10].

Routing AVB flows with the constrained WCED is difficult
because a route change might require the entire network to
be re-evaluated [10]. Existing approaches find route candidates
for each flow and execute WCED analyses on their combi-
nations for a good solution [11]–[13]. These approaches are
overwhelmed by the exponential search space although meta-
heuristic algorithms are used to perform efficient exploration.
Additionally, current WCED analyses can make tight delay
estimations when based on a specific TT flow setup. Once the
TT setup changes, the controllers must re-evaluate the WCED
of AVB flows and reroute the flows that lose their deadline
guarantees. Similarly, when SR-A flows change, the issue that
SR-B flows may violate their deadlines must be resolved.

In this work, we propose a per-class traffic management
scheme for TSN, which aims at isolating the management logic
between traffic classes. It allocates bandwidth to SR classes
based on their relative data rate. Then, the flow routes of
each SR class are managed independently. To enable per-class
management, our contributions are as follows.

• We propose a heuristic routing algorithm to avoid checking
the WCED exponential times. It handles the AVB flows one
by one. For each flow, the algorithm first prunes the network
to consider only feasible links. Then, metrics correlated
with the WCED are used to generate route candidates. The
algorithm applies WCED analysis on a polynomial number
of route candidates to ensure deadline guarantees at last.

• We propose a composable WCED analysis that bounds the
blocking from other classes by analyzing traffic shaping,
i.e., its WCED bound is independent of the flow setups in
other classes. Hence, when high-priority flows change, low-
priority flows do not worry about deadline violations. Its
WCED computation is simpler and faster than the existing
approaches. Also, it allows the routes and the WCED of SR-
A and SR-B to be computed independently and in parallel.
The cost is that its WCED bound is more pessimistic.



This paper is structured as follows. Section II reviews the
related works. Section III introduces our system model. Sec-
tion IV describes the composable WCED analysis. The routing
algorithm is discussed in Section V. We perform evaluation in
Section VI and conclude the paper in Section VII.

II. RELATED WORK

This section introduces the related works of the WCED
analysis and routing of AVB flows in software-defined TSN.

Several works have studied routing with end-to-end dead-
lines. Routing with the end-to-end delay constraints is studied
in real-time SDN [6] and vehicular SDN [7]. Both works
model delay as weights of the links. This assumption does
not apply to TSN whose delay requires specific analysis. [14]
and [15] studies routing with guaranteed quality of service
based on network calculus. But they target networks with
different shaping mechanisms than TSN. Thus, the network
calculus model and the resulted routing scheme are different.
Several routing approaches have been developed for AVB flows
in TSN. [16] and [17] use integer linear programming to
route the SR-A flows whose WCED can be formulated with
linear constraints. But they cannot handle SR-B flows whose
WCED must be achieved with complex algorithms (e.g., the
algorithm in [10]). GRASP [11]–[13] uses a stochastic search
algorithm to optimize the routes of both SR-A and SR-B flows.
It requires checking the WCED for an exponential amount of
route candidates. So, the execution time is too long to be used
at run-time. Instead, our routing scheme supports both SR class
A and B. It only checks the WCED for a polynomial number
of route candidates to ensure a short execution time.

The delay of AVB flows has been widely studied. [18]
computes the delay of the AVB frames assuming periodic
arrival. Since it does not consider the arrival jitter, it is not
applicable for WCED. The eligible interval analysis [19] proves
that the blocking due to higher and lower priority classes is
bounded by the traffic shaping instead of the exact traffic
context. Although it is composable, it does not consider the
arrival jitter for blocking within each SR class, so it is also
not applicable for WCED. Several holistic approaches have
been developed to analyze the WCED of AVB flows, including
network calculus [20], compositional performance analysis
[8], trajectory approach [9], and Forward End-to-end Delay
Analysis (FA) [10]. All of them are non-composable approaches
based on specific flow setups in other traffic classes. Instead,
the proposed analysis provides a composable WCED bound.

III. SYSTEM MODEL

A network is a directed graph G ≡ (V,E). The nodes V are
switches (VSW ) and hosts (VES). (u, v) ∈ E is the simplex
connection from u to v (u, v ∈ V ). A bidirectional link is
modeled as two opposite edges. For simplicity, we assume
uniform links with bandwidth bw and propagation delay pd. γ
is the maximum proportion of bandwidth that can be allocated
to SR classes. Its default value in the AVB standard is 0.75 [3].

A flow is a 6-tuple f = (sf , Df , cf , xf , Tf , dlf ), where sf ∈
V is the source, Df ⊆ V the destinations, cf the transmit time
of the maximum-sized frame (interframe gap included), xf ∈
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Fig. 1: Traffic queuing and shaping in TSN [2].

TABLE I: Table of symbols and notations
Network notations

G network pd propagation delay
V network nodes bw link bandwidth
E network links Fx

u,v class x flows on (u, v)
γ (SR) bw limit tts length of time slot
αx idle slope tms min service time
βx send slope twb max reserved time

Flow (f ) notations
sf source cf frame size
Df destinations Tf transmission period
dlf deadline xf SR class
Rf route Pd,f path to d

cx class x max transmit time
WCED analysis notations

Jv,f jitter Smaxv,f longest traversal time
Lu,v,f max link delay Sminv,f shortest traversal time
MCx max credit in(u) ingress nodes of u

Wu,v,f (t) blocking time t frame arrival time
W tas

u,v,f (t) TAS blocking rbfu,f (t) request bound function
W cbs

u,v,f (t) CBS blocking ibfu,f (t) ingress bound function
W other

u,v,f (t) blocking by BE and other SR classes
W same

u,v,f (t) blocking from the same SR class
Qx

w,u,v {g ∈ Fx|(w, u), (u, v) ∈ Rg}
Ixu,v {g ∈ Fx|sg = u}

O(WA) complexity of WCED analysis
Routing notations

k order of paths wu,v weight of the links

{A,B} the SR class, Tf the frame ingress period, and dlf the
end-to-end deadline. The set of flows in SR class x ∈ {A,B}
is denoted by F x and, when routes are specified, the set of
flows in SR class x routed on link (u,v) is denoted by F x

u,v .
The maximum transmit time of the class x flows is denoted
by cx. cBE denotes the maximum transmit time of BE flows.
To set up a flow, the network controller allocates route Rf =
{Pd,f ⊆ E| ∀d ∈ Df}, which consists of a path (the links over
which frames are forwarded) to every destination of the flow.
We list the notations in TABLE I for the rest of the paper.

A. Traffic Shaping

TSN queuing is conducted on a per-class basis. Each class
(TT, SR-A, SR-B) has a queue on every egress port shown
in Fig. 1. Traffic shaping determines which queue can be
transmitted. Several integration policies have been proposed to
integrate CBS with a TAS scheduling. This paper assumes the
integration policies in TSSDN [21] which offers deterministic
delay and rapid run-time configuration.

TAS consists of gates that cyclically open and close con-
trolled by a predefined schedule stored in the gate control list.
In TSSDN, the period of the schedule is uniformly divided
into time slots with length tts. The longest duration TT frames
can reserve in any time slot is twb (including guard band and



Per‐class AVB controller

AV
B 
Sl
op

e 
al
lo
ca
tio

n

AVB SR‐A route 
controller

AVB SR‐B route 
controller

Run‐time 
request

Current 
Config.

Success Admit 
request

reject 
request

(a). Per‐class traffic controller (b). AVB Run‐time management

Routing
Fail

Adjust slopes Fail

Success

Routing
Fail

Success

Fig. 2: Per-class traffic management scheme of TSN

interframe gap). For the rest of the time slot, TAS gates are
opened for both AVB and BE traffic. Thus, the minimum service
duration for AVB and BE traffic is tms = tts − twb in every
time slot. Note that tts and twb are defined before the network
starts and do not change on the run [21].

CBS associates the queue of each SR class with a credit.
Frames can start transmission only when the queue holds non-
negative credit. In CBS, the desired bandwidth reserved for SR
class x is represented by the idle slope αx and the send slope
is defined as βx = bw−αx. While a queue is transmitting, its
credit is decreased at the rate of the send slope. If the (non-
empty) queue for SR class x is blocked due to negative credit
or other ongoing transmissions, its credit is replenished at the
rate of the idle slope. The credit stays constant when the TAS
gate is closed and it is set to zero once the queue is empty.
For each SR class, we allocate the same send and idle slopes
for every link like most of the AVB routing approaches [11],
[12], [16], [17], because we focus on finding a good solution
within short run-time. Otherwise, searching for idle slopes on
every link together with the flow routes can be too complex.

B. Per-Class Management Scheme

In conventional TSSDN where non-composable analyses are
used to check the WCED, the problem that changing the high-
priority flows may cause the deadline violation of low-priority
flows must be solved. Per-class traffic management avoids this
issue by isolating the management logic between traffic classes
via composable WCED analysis. A per-class traffic controller
is shown in Fig. 2(a), which consists of three components: a
slope allocation unit that computes the CBS slopes for both SR
classes and two independent route controllers for SR-A and SR-
B. Since the WCED of the TT traffic is guaranteed via TAS and
cannot be disrupted by the AVB and BE traffic, the TT traffic
can use the existing management approaches for TSSDN [21].

Both route controllers execute our proposed routing algo-
rithm. First, the network is pruned to consider only feasible
links. Then, route candidates are generated based on metrics
correlated with the WCED. The algorithm only applies WCED
analysis on the generated route candidates, of which the number
is polynomial. Because the WCED analysis is composable,
routing can be performed independently for each SR class. Here
we describe our management scheme in detail.

Initialization: When the network starts, the controller re-
ceives the initial set of flows. First, the slope allocation unit
partitions the bandwidth between SR-A and SR-B based on

their data rate ratio according to Eq. 1. Then, flows are incre-
mentally routed into the network using the proposed routing
algorithm. Flows routed successfully can be admitted while the
flow requests are rejected if the algorithm fails to find a route.

∀x ∈ {A,B}, αx =
γ · bw ·

∑
f∈Fx cf/Tf∑

y∈{A,B}
∑

f∈Fy cf/Tf
(1)

Run-time management: When receiving flow requests, the
controller follows the procedure in Fig. 2(b) to maintain the
running flows while adding new flows. It handles flow requests
one by one. First, routing is attempted without changing the
CBS slopes. If it fails, the idle slopes are recalculated by
Eq. 1 counting in both the running flows and the flow request.
The WCED analysis checks that all running flows still meet
their deadlines with the adjusted slopes. Otherwise, the slope
adjustment fails and the flow request is rejected. Then, routing
is re-attempted with the adjusted slopes.

IV. COMPOSABLE WCED ANALYSIS

Our composable WCED analysis is presented in this section.
It independently establishes the WCED bounds for each SR
class. Its jitter computation is based on FA [10]. So we first
introduce FA and then present our analysis.

A. Introduction to Forward End-to-end Delay Analysis

The queuing of AVB flows causes blocking over their routes,
where blocking on a link causes arrival jitter on downstream
links. FA propagates a busy period analysis along the flow
routes. On each link (u, v) ∈ Rf , the shortest and longest
traversal time of flow f from sf to v, denoted by Sminv,f

and Smaxv,f , are iteratively computed by Eq. 2 [10], in which
Lu,v,f is the maximum delay of f on (u, v) due to queuing and
transmission. Sminsf ,f and Smaxsf ,f are zero by definition.

Sminv,f = Sminu,f + cf + pd

Smaxv,f = Smaxu,f + Lu,v,f + pd
(2)

The jitter is the maximum difference between the shortest and
longest traversal time, defined as Jv,f = Smaxv,f −Sminv,f .
The deadline of f is met if Smaxd,f ⩽ dlf ,∀d ∈ Df . On each
link, FA calculates Lu,v,f through a busy period analysis when
the arrival jitters are known. Assume a frame of f arrives at
time t since the start of the busy period, the maximum blocking
time Wu,v,f (t) is defined as the maximum time that the frame of
f which arrives at time t finishes transmission (measured since
the start of the busy period). Lu,v,f is defined by Eq. 3 [10].

Lu,v,f = max
t⩾0

{Wu,v,f (t)− t} (3)

B. Composable Analysis

The main difference between our analysis and FA is that we
acquire Wu,v,f (t) in a composable manner, i.e., our Wu,v,f (t)
bound only depends on the flows in class xf and the traffic
shaping. Note that although the sizes of the frames are deter-
mined by their applications, it is recommended to have them
limited [22]. Thus, cx can be known before the network starts.

Wu,v,f (t) can be analyzed by Eq. 4, in which W other
u,v,f is the

blocking (time) by the transmission of BE and other SR classes,
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Fig. 3: Worst-case ingression of the upstream CBS

W same
u,v,f the blocking by the transmission of the same SR class,

W cbs
u,v,f the blocking by CBS, and W tas

u,v,f the blocking by TAS.

Wu,v,f (t) = W other
u,v,f +W same

u,v,f (t)+W cbs
u,v,f (t)+W tas

u,v,f (t) (4)

Blocking from BE and other SR classes: The maximum
credit of each SR class is denoted by MCA and MCB . The
eligible interval analysis proves that the blocking caused by BE
and other SR classes is bounded by Eq. 5 [19]. This bound is
composable since it is independent of other traffic classes. So
we use it directly. Note that since every link has identical idle
slopes, their maximum credits are the same as well.

MCA = αA · (max{cB , cBE}

MCB = αB · (cBE(1 +
αA

βA
) + cA)

W other
u,v,f =

MCxf

αxf

(5)

Blocking from the same SR class: Two major facts limit
the blocking between the flows of an SR class. First, the frame
arrival follows the jittered periodic pattern, in which the worst-
case scenario happens when the first frame arrives with the
maximum jitter and the later frames arrive as early as possible.
Thus, the blocking of each flow can be bounded by the request
bound function (rbfu,g(t)) defined in Eq. 6.

∀g ∈ F x
u,v, rbfu,g(t) = (1 +

⌊
t+ Ju,g

Tg

⌋
)cg (6)

Second, frames arrived from the same upstream link are
limited by its CBS. This is referred to as the serialization
effect [9], [10]. However, existing works address the serial-
ization effect in a non-composable manner, i.e., the SR-A
flows must be known to analyze SR-B flows. Our approach
solves this issue. To consider the serialized flows, we define
in(u) = {w ∈ V |(w, u) ∈ E} and distinguish flows based on
where they are ingressed from as Eq. 7.

Qx
w,u,v = {g ∈ F x|(w, u), (u, v) ∈ Rg},∀w ∈ in(u)

Ixu,v = {g ∈ F x|sg = u}
(7)

The worst-case ingress scenario on the upstream link is
illustrated in Fig. 3. During [0, t], the first arrived frame may
be maximum-sized while the last frame can have an arbitrary
size. So the duration in which frames transmitted on (w, u)
can reach u is bounded by t + cx. The CBS holds maximum
credit before the ingress period. When the ingress period ends,
minimum credit is left. Hence, the frame arrival is bounded by
the ingress bound function (ibfw,u,f (t)) defined in Eq. 8.

αxf (t+ cx − ibfw,u,f (t))− βxf ibfw,u,f (t)

⩾ −MCxf − βxf cx

⇒ ibfw,u,f (t) ⩽
αxf

bw
· t+ MCxf

bw
+ cx

(8)
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W same
u,v,f (t) bounded both by the request bound and the ingress

bound can be calculated by Eq. 9.

W same
u,v,f (t) =

∑
g∈I

xf
u,v

rbfu,g(t)+

∑
w∈in(u)

min{
∑

g∈Q
xf
w,u,v

rbfu,g(t), ibfw,u,f (t)}
(9)

CBS Blocking: A composable bound of W cbs
u,v,f (t) can be

achieved by relaxing the bound in FA, which is in Eq. 10.

W cbs
u,v,f (t) = max{0,W same

u,v,f (t)− cf} ·
βxf

αxf
(10)

TAS Blocking: The blocking due to TAS occurs during
[0,Wu,v,f (t)]. In the worst-case, two consecutive durations are
reserved before the AVB and BE flows can transmit, which
is illustrated in Fig. 4. Thus, Wu,v,f (t) and W tas

u,v,f (t) are
correlated as shown by Eq. 11.

W tas
u,v,f (t) = (1 +

⌈
Wu,v,f (t)

tts

⌉
) · twb (11)

Combining Eq. 4 and 10, Wu,v,f (t) can be solved by
eliminating W tas

u,v,f (t) as Eq. 12 shows.

W other
u,v,f +W same

u,v,f (t) +W cbs
u,v,f (t)

= Wu,v,f (t)− (1 +

⌈
Wu,v,f (t)

tts

⌉
) · twb

⇒ Wu,v,f (t) ⩽
2twbtts
tms

+ (W other
u,v,f +W same

u,v,f (t) +W cbs
u,v,f (t))

tts
tms

(12)

To conclude, given a time t, the maximum blocking time can
be computed by Eq. 12, in which W other

u,v,f can be computed by
Eq. 5, W same

u,v,f (t) by Eq. 9, and W cbs
u,v,f (t) by Eq. 10. To find

the maximum delay Lu,v,f , FA checks t with a constant step
(e.g., 1µs) starting from 0. It can stop once Wu,v,f (t) ⩽ t
which indicates that the busy period ends. Theorem 1 provides
a sufficient condition for the stop condition to occur. A possible
consequence of violating this condition is infinite backlog.

Theorem 1. A sufficient condition for the t to exist so that
Wu,v,f (t) ⩽ t is that

∑
g∈Fxf

u,v

cf
Tf

< tmsα
xf

ttsbw
.

Proof. The request bound function has an upper bound
rbfu,g(t) ⩽

cg
Tg

t +
Tg+Ju,g

Tg cf . Hence, W same
u,v,f (t) in Eq. 9 can

be upper bounded by the sum of these bounds for all g ∈ F
xf
u,v ,

which is also a linear function of t with coefficient
∑

g∈F
xf
u,v

cg
Tg

.
When t is sufficiently large so that W same

u,v,f (t) ⩾ cf , the



W cbs
u,v,f (t) in Eq. 10 is linear regarding W same

u,v,f (t) with the
coefficient βxf

αxf . In such scenarios, Wu,v,f (t) in Eq. 5 can be
upper bounded by a linear function of t whose coefficient is
bw×tts×

∑
g∈F

xf
u,v

cg
Tg

tms×αxf . A sufficient condition for the t to exist so
that W same

u,v,f (t) ⩽ t is that the coefficient of the upper bound
of W same

u,v,f (t) is less than one, i.e.,
∑

g∈Fxf
u,v

cf
Tf

< tmsα
xf

ttsbw
.

V. WCED-AWARE INCREMENTAL ROUTING

The WCED analysis evaluates all flows in an SR class
through the entire network. Since the link delay depends on
the arrival jitters, assigning weights whose sum over route
bounds the WCED is not feasible. Existing approaches [11]–
[13] optimize the routes of all flows at the same time, whose
search space is exponential. To find a solution within the limited
time, we route the flows incrementally, i.e., flows are added
one by one to the traffic so that neither the added flow nor
the existing flows violate the deadline. But even for individual
flows, the number of route candidates can be exponential. So we
propose a heuristic algorithm to generate a polynomial number
of route candidates for WCED checking.

Algorithm 1 aims at finding a solution by running the WCED
analysis polynomial times. First, it prunes the networks to
enforce the sufficient condition in Theorem 1 to avoid infinite
backlog (line 3). Then, metrics correlated with the WCED are
used as weights of the links to generate a polynomial number
of route candidates. Finally, it applies the proposed WCED
analysis to these route candidates to ensure deadline guarantee.

Route candidates can be generated in two steps. The first
finds path candidates to each destination and the second com-
bines them together. To find path candidates, Algorithm 1
assigns a weight to each link based on metrics correlated with
the WCED (line 5) and applies k shortest path algorithm [23]
(line 8-10). There are several options to set the weights, which
we compare experimentally later.

• Hop-based: the weight of each link is 1 since routes with
fewer hops potentially suffer less blocking.

• Utilization-based: the weight of the link (u, v) is set as∑
g∈F

xf
u,v

cg/Tg to avoid heavily utilized links.
• Delay-based: the weight of the link is set as Eq. 13 to

avoid interfering flows with high WCED.

wu,v = max
g∈F

xf
u,v

max
d∈Dg

{Smaxd,g

dlg
} (13)

Then, Algorithm 1 combines the path candidates into route
candidates (line 11-22). Since k path candidates are computed
for each destination, they can form k|Df | route candidates.
Checking all of them is still expensive. Hence, we generate
route candidates heuristically based on the upper bound of the
sum of weights in Eq. 14. This bound is valid for positive
weights according to the cardinality of the set union.∑

(u,v)∈Rf

wu,v ⩽
∑

(u,v)∈Pd,f

wu,v +
∑

d′∈Df\{d}

∑
(u,v)∈Pd′,f\Pd,f

wu,v (14)

Instead of minimizing the sum of weights, this bound is
used as an alternative objective. When a path candidate Pd,f

is formed into route candidates, the bound is minimized if the

Algorithm 1: AVB incremental routing
input : Network G; existing flows F ; added flow f
output: Route of the added flow Rf

/* construct path candidate */
1 for (u, v) ∈ E do
2 if cf

Tf
+
∑

g∈F
xf
u,v

cg
Tg

> tmsα
xf

ttsbw
then

3 G.RemoveEdge(u, v)
4 else
5 G.SetWeights(u, v, F )
6 end
7 end
8 for d ∈ Df do
9 Kd = KShortestPath(G, sf , d)

10 end
/* construct route candidate */

11 RCQ = ∅ // Route candidate queue
12 for d ∈ Df do
13 for Pd ∈ Kd do
14 RC = ∅ // Route candidate
15 RC.SetPath(d, Pd)
16 for d′ ∈ Df \ {d} do
17 Pd′ = GetMinWeightBound(Kd′ , Pd)
18 RC.SetPath(d′, Pd′)
19 end
20 RCQ.Insert(RC)
21 end
22 end
/* verify route candidate (WCED) */

23 for R ∈ RCQ do
24 f.SetRoute(R)
25 ComputeWCED(G,F ∪ {f})
26 if ∀g ∈ F xf ,∀d ∈ Dg, Smaxd,g ⩽ dlg then
27 return R
28 end
29 end

paths to other destinations d′ ∈ {Df \ d} have a minimum
value of

∑
(u,v)∈Pd′,f\Pd,f

wu,v . Such paths can be selected
in O(k|V|) (GetMinWeightBound in line 17). Algorithm 1 con-
structs one route candidate based on every path candidate by
minimizing the alternative objective, resulting in k×|Df | route
candidates. They are increasingly sorted in the route candidate
queue (RCQ, line 20) based on the sum of weights. At last, the
candidates in RCQ are checked for WCED. The first one which
satisfies the deadline of all flows is returned (line 23-29).

The complexity of the proposed WCED analysis is pseudo-
polynomial similar to the FA [10]. Assume it is denoted by
O(WA). Algorithm 1 takes |V|2(|F|+k|V|) to compute weights
and k shortest paths, k2|Df|2|V| to construct route candidates,
and k|Df|O(WA) to check the route candidates. Thus, Algo-
rithm 1 has pseudo-polynomial complexity as well.

VI. EVALUATION

To evaluate the proposed approach, we use two indus-
trial topologies: the architecture of the ORION crew explo-
ration vehicle [24] and an industrial automation case study
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Fig. 5: Result of the WCED analysis and routing evaluation.

from ABB [12]. Both networks consist of uniform links
(bw=100Mbps, pd=5.21µs). γ is set to 0.75 as the default value
in the AVB standard [3]. Because the original use cases do not
have SR-B flows, we generate test cases with randomized flows.
Every test case has the same number of SR-A and SR-B flows.
Every flow has one source and two destinations selected with
uniform distribution. Frames are periodically ingressed from the
sources whose specifications follow the latest AVB profile [22]
shown in TABLE II. Our Python-based implementation runs on
an Intel Core i7-7700K processor.

TABLE II: The flow template adopted from [22]
SR Class Tf (µs) cf (µs) DLf (ms)

SR-A 125 9.28 2
SR-B 1333.33 87.2 15

A. WCED Analysis Evaluation

We compare our composable delay analysis (CA) and
FA [10] in terms of tightness and run-time. We generate test
cases with 20, 40, 60, 80, 100 flows. For each number of flows,
10 random test cases are generated on each topology resulting
2 × 5 × 10 = 100 test cases in total. The flow routes are
provided using our heuristic algorithm with hop-based weight.
Both CA and FA check the busy period with the step of 10µs.
The quality of CA is evaluated by the CA/FA ratio which is
the ratio between the WCED computed by CA and FA.

Since FA originally does not consider TT blocking, we first
compare CA and FA without TT flows, i.e., blocking due
to TAS is always zero. Fig. 5(a) shows the average CA/FA
ratio versus the number of flows. Without any higher priority
traffic, CA and FA produce the same results for SR-A, i.e., the
CA/FA is always one. For SR-B instead, the average CA/FA
ratio is up to 1.31 (when the networks have 20 flows). The
cause of the pessimism is that CA only considers the worst-
case CBS behavior to bound the WCED so that the WCED is
valid regardless of the SR-A flows. Instead, FA can consider
the worst-case ingression behavior of the SR-A flow setup to
reduce the WCED bound of SR-B flows. As the network load
increases, the worst-case ingression approaches the worst-case

CBS behavior. Thus, the pessimism reduces, e.g., the average
C/F ratio is reduced to 1.23 in test cases with 100 flows.

Fig. 5(b) shows the average run-time of CA and FA. CA
allows SR-A and SR-B flows to be analyzed independently. So
their run-times are separately measured and the largest one is
the run-time for ideal parallel execution. FA instead requires
the ingress jitter of SR-A to analyze SR-B. So, SR-A and
SR-B must be analyzed in series. The run-times of both CA
and FA increases with the network load mainly because the
busy period to be checked becomes longer. Similarly, the busy
periods of SR-A flows are typically shorter than SR-B flows
so CA is faster in analyzing the SR-A flows. CA simplifies the
calculation of blocking due to higher-priority classes. Thus, it is
1.6x faster than FA even without parallelism: CA takes 0.023s
(0.008s for SR-A, 0.015s for SR-B) in total while FA takes
0.039s in test cases with 40 flows. With ideal parallelism, the
speedup is 0.039/0.015=2.6x for the same test cases.

To evaluate the quality of CA with TT flows, we generate 10
test cases with 60 flows on each topology resulting in 20 test
cases. For each test case, we set tts to 200µs and vary twb from
0 (no TT flow) to 25µs. CA is applied to analyze the WCED
considering TAS. Meanwhile, FA analyzes the WCED without
TT blocking since it does not consider TAS. The resulting
CA/FA ratio versus twb is shown in Fig. 5(c). For both SR-
A and SR-B flows, the CA/FA ratio is approximately linear
regarding twb as Eq. 12 is based on a linear upper bound of
the TAS blocking. The increment of WCED is more significant
in SR-A flows than in SR-B. For instance, the CA/FA ratios
of SR-A vary from 1 to 1.59 while those of SR-B vary from
1.25 to 1.66. The main reason is that the jitter of the SR-B
flows is initially higher due to the blocking of SR-A flows. So,
while adding TT flows further increases the jitter, its impact on
WCED is less significant for SR-B flows than SR-A.

B. Routing Evaluation

We compare the proposed routing algorithm using different
weight options (hop, utilization, delay) with the GRASP algo-
rithm [12], which is a state-of-the-art AVB routing algorithm



supporting arbitrary SR classes. Similarly, we generate random
test cases with 20, 40, 60, 80, 100 flows, 10 test cases on each
topology for every number of flows (100 in total). The run-time
of GRASP depends on a user-specified timeout and the original
setting is 15 minutes [12] which is impossible for run-time flow
setup. Thus, for each test case, we set the timeout of GRASP
to the average run-time achieved by running our algorithm with
the three weight options, i.e., we keep the run-time of GRASP
similar to our algorithm and compare the number of flows
successfully routed with deadline guarantees. Both algorithms
use CA to compute WCED. Note that CA allows SR-A and
SR-B flows to be routed in parallel. But similar parallelism can
be implemented for GRASP if it uses CA as well. Thus, the
comparison is performed without parallel execution for better
fairness. The order of the shortest path k is set to 10 as the
minimum value resulting in maximum routability.

The average percentage of the flows with deadline guarantees
versus the number of flows is shown in Fig. 5(d). As network
load increases, more blocking occurs between the frames. So
the percentage of the flows with deadline guarantees reduces.
Since GRASP performs stochastic search, the results scatter
around the trend line. Given a similar amount of time, our
algorithm routes 1.6x more flows than GRASP, e.g., it suc-
cessfully routes 99% of the flows in test cases with 100 flows
while GRASP only routes 61% of the flows. The differences
caused by the weight options are within 5%. Among the three
options tested, hop-based weight leads to the best performance.
It is because routing flows with fewer hops reduces the overall
network utilization so more flows can be added later. It also
indicates that, in networks with uniform links and load, routing
flows with fewer hops can reduce WCED more efficiently than
routing flows on less crowded links.

The per-flow average run-time of our algorithm with different
weight options is shown in Fig. 5(e). The average run-time
increases when there are more flows in the network for two
reasons. First, when the network load increases, the busy
period becomes longer. Thus, the WCED computation becomes
slower. Second, a higher network load potentially leads to
fewer route candidates satisfying flow deadlines. So, more route
candidates need to be checked. The run-time shows a similar
trend with the routing quality, i.e., weight options that can set
up more flows have shorter run-time. Among the three options,
hop-based weight leads to the best run-time, e.g., its average
per-flow run-time is 0.14s in test cases with 100 flows, because
it potentially reduces the overall network utilization.

VII. CONCLUSION

In this paper, we propose a per-class flow management
scheme for software-defined in-vehicle TSN. To enable per-
class flow management, we introduce composability into the
WCED analysis of AVB flows. The composable WCED bound
is valid regardless of the changes in other traffic classes. So,
when high-priority flows change, low-priority flows do not
worry about the deadline violation. It also improves the analysis
time by up to 2.6x by simplifying the computation and enabling
parallelism. The cost in exchange is that the WCED is more
pessimistic for SR-B flows as well as SR-A flows with the

presence of TT flows. Based on the composable analysis,
we propose a heuristic routing algorithm that guarantees the
deadline of the AVB flows. It generates route candidates based
on the link weights correlated to WCED and applies the
composable WCED analysis to ensure deadline guarantees. The
experiments show that our algorithm with hop-based weights
can route up to 1.6x more flows than existing solutions when
a similar amount of run-time is consumed.
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