
Deep-Reinforcement-Learning-based Scheduler for
Time-Aware Shaper in In-Vehicle Networks

Mohammadparsa Karimi, Majid Nabi, Andrew Nelson, Kees Goossens, and Twan Basten
Electronic Systems (ES) group, Department of Electrical Engineering, Eindhoven University of Technology

The Netherlands
{m.karimi, m.nabi, a.t.nelson, k.g.w.goossens, and a.a.basten}@tue.nl

Abstract—As vehicles develop into software-defined platforms
with powerful automated driving capabilities and driver support
systems, their in-vehicle networks become significantly more
complicated. A key technique for ensuring deterministic, low-
latency connectivity for crucial data traffic in such settings is
Time-Sensitive Networking (TSN), and specifically the Time-
Aware Shaper (TAS). However, current TAS scheduling tech-
niques have difficulty adjusting schedules to dynamically shifting
traffic patterns and changing operating conditions. This paper
presents an adaptive scheduler using Deep Reinforcement Learn-
ing (DRL), which aims to meet strict deadlines, reducing latency
and providing near-ideal resource usage. Experimental results for
different vehicle scenarios show that our DRL-based scheduler
performs better in terms of success rate, low latency, and overall
network performance than state-of-the-art heuristic algorithms
such as earliest deadline first (EDF) scheduling.

Index Terms—In-Vehicle Networking, TSN, TAS, Adaptive
Scheduling, Deep Reinforcement Learning

I. INTRODUCTION

The automotive industry is rapidly moving from traditional,
hardware-centric vehicles to software-defined vehicles (SDV)
[1]. These modern vehicles integrate advanced features, such
as autonomous driving and Advanced Driver Assistance Sys-
tems (ADAS), to improve safety and driving comfort, and
to move closer to full autonomy [2]. A key requirement for
these emerging capabilities is a robust in-vehicle communica-
tion infrastructure. Next-generation vehicles must process and
transmit large volumes of real-time data from sources such as
high-resolution cameras, LIDAR, and radar, as well as from
onboard computing units [3].

As vehicles become more self-reliant, the complexity of
in-vehicle networks (IVNs) increases. Traditional networking
technologies like CAN, FlexRay, and MOST are reaching
their limits in terms of bandwidth, latency, and flexibility
[4]. In contrast, Ethernet-based Time-Sensitive Networking
(TSN) offers deterministic, low-latency, and highly reliable
data exchange. These properties make TSN a foundational
technology for upcoming automotive platforms, enabling reli-
able communication in challenging and varied conditions [5].

Among the TSN set of standards, the Time-Aware Shaper
(TAS) is especially significant. TAS assigns precise time
windows for data transmission, ensuring that critical traffic,
such as obstacle detection or vehicle control commands, can be
delivered on time without interference. This scheduling mech-
anism relies on Gate Control Lists (GCLs), which combine

the timing of the opening and closing of network gates, pre-
venting data bottlenecks, and ensuring that priority messages
always meet their deadlines [6]. However, the challenge lies in
determining effective and efficient TAS schedules, especially
in the face of unpredictable and continuously changing traffic
patterns found in real-world driving scenarios [7].

The complexity of modern autonomous vehicles only am-
plifies this difficulty. Driving conditions vary widely, from the
stop-and-go nature of urban streets to the high-speed flow
of highways. Each scenario imposes different requirements
on network performance and data handling. Traditional TAS
scheduling approaches, which often rely on static or offline-
defined configurations, struggle to adapt when conditions shift
mid-operation [8]. In addition, computing an optimal schedule
involves exploring a large search space, making it difficult
to achieve real-time online responsiveness while maintaining
stringent timing guarantees [9].

To address some of these limitations, this paper proposes
a Deep Reinforcement Learning (DRL)-based adaptive sched-
uler for TAS in IVNs. Using DRL, we can create a learning-
based approach that refines its scheduling strategies as the
conditions evolve. Our concrete contributions are:

• A DRL-based Adaptive Scheduler: We introduce a
novel scheduler that applies DRL techniques to optimize
TAS online during operation, accommodating changing
in-vehicle conditions.

• Performance Evaluation: We present evaluations across
various traffic scenarios, demonstrating that our DRL-
based method outperforms other approaches in terms of
adaptiveness, latency, and resource usage.

• Web Application and Open-Source Release: We im-
plemented a web application integrating our proposed
scheduler, allowing users to schedule desired flows and
analyze results interactively. The source code is avail-
able as open-source via the TU/e ES GitHub repository
(https://github.com/TUE-EE-ES).

The remainder of this paper is organized as follows.
Section II reviews related work, focusing on existing TAS
scheduling methods and their limitations. Section III defines
the problem space and describes the challenges associated with
adaptive TAS in IVNs. In Section IV, we detail our DRL-based
scheduling algorithm, its architecture, and its implementation.
Section V presents the experimental setup, results, and perfor-



mance analysis. Finally, Section VI concludes the paper and
outlines potential directions for future research.

II. RELATED WORK

Scheduling in TSN, especially for TAS, has received con-
siderable attention. Many methods have been proposed to
ensure reliable and low-latency communication in in-vehicle
networks. These approaches fall into three main categories:
heuristic, exact, and machine-learning-based. Each category
offers unique benefits but also faces its own limitations [6].

A. Heuristic Approaches

Heuristic methods are commonly used because they are
simple and can quickly generate workable schedules. As such,
they are a practical starting point for large networks and can
be re-run whenever conditions change, thanks to their low
computational overhead. For example, Walrand [10] notes that
heuristic-based traffic shaping can be executed at a low cost,
providing relatively quick solutions.

Kim et al. [11] proposed a heuristic approach that first
constructs a valid schedule and then refines it to minimize end-
to-end latencies. EDF scheduling has also been adapted to TAS
[12], [13]. For example, Dobrin et al. [13] introduced an EDF-
based heuristic that adjusts deadlines to handle retransmissions
before scheduling frames by their earliest deadlines, ensuring
timely delivery under certain conditions.

As heuristics offer computational efficiency, they pro-
vide adaptiveness by recomputing schedules when conditions
change. But, as the number of flows and the diversity of their
requirements increase, heuristics may struggle to maintain
near-optimal results. They rely on relatively simple decision
criteria (e.g., sorting by deadlines or iteratively refining initial
guesses), which can overlook complex interdependencies and
lead to less effective utilization of available resources [6].

B. Exact Approaches

Exact methods use techniques like Integer Linear Program-
ming (ILP) and Satisfiability Modulo Theories (SMT) to find
optimal solutions with strict timing guarantees. For example,
Stüber et al. [14] present an ILP solution to compute Efficient
Robust Schedules (ERS) that provide deterministic perfor-
mance under varying loads and (bounded) timing uncertainty.
Other exact approaches are an ILP solution by Schweissguth
et al. [15] and an SMT solution by Craciunas et al. [16].
These exact methods are slow and resource-intensive, making
them unsuitable for online operation. They may also struggle
to scale as in-vehicle networks become more complex and
diverse. Because scheduling in TSN is an NP-hard problem
[17], exact methods cannot easily adapt to complex scenarios.

C. Machine Learning-Based Approaches

Machine learning, and in particular DRL, has recently
gained attention in TSN scheduling. Unlike traditional meth-
ods, DRL learns from experience and adapts as conditions
change. Roberty et al. [18] show that DRL can produce
better TAS schedules under dynamic conditions than older

approaches. Islam and Muslim [19] use Graph Convolutional
Networks (GCN) with DRL to handle more complex traffic
demands in IVNs.

DRL-based techniques offer adaptability and can improve
bandwidth use and reduce latency as traffic changes. They
can overcome many of the limits of both heuristic and exact
methods. Despite these advantages, existing DRL methods
face challenges, including limited training on complex real-
world scenarios, restricted parameter optimization, and a lack
of complex scenario evaluations. Our approach addresses some
of these gaps by extending optimization to include schedules,
cycle lengths, and gate control sequences while evaluating
performance across diverse traffic patterns and network con-
figurations, especially for IVNs.

III. PROBLEM DEFINITION

This section presents the TAS scheduling problem, includ-
ing how we represent the network components, the specifi-
cation of time-triggered (TT) streams, and the formulation
of scheduling constraints that must be met to ensure timely
communication.

A. Network Model

We consider an IVN as a directed graph G = (V,E),
where each vertex v ∈ V represents a network device (e.g., an
ECU or a switch), and each directed edge e ∈ E represents
a communication link [20]. Each device v has one port for
each of its outgoing links. Each port is associated with a
GCL, which defines the scheduling of outgoing traffic for that
port. The GCL is used to open and close transmission gates
for queues associated with a port at precisely defined times,
ensuring that time-sensitive streams are transmitted during
their allocated time slots to achieve bounded latency. This is
further explained below. Each link e ∈ E is defined as

e = (srce, deste, be), (1)

where srce, deste ∈ V are the source and destination nodes of
the link, and be is the transmission bandwidth of the link.

B. Time-Triggered (TT) Streams

We consider a set of TT streams at each point in time S =
{s1, s2, . . . , sn} [21]. Each TT stream s is specified as

s = (vtalker,s, Vlistener,s, Ts, nf,s, trelease,s, fs, ds), (2)

where vtalker,s ∈ V is the source (talker) node, Vlistener,s ⊆ V ,
is the set of one or more destination nodes for the stream
(where Vlistener,s 6= ∅), Ts is the period of the stream, nf,s
is the number of frames generated each period, trelease,s(i) is
the release time of frame i in a period, relative to the start
of the period, fs is the frame size in bytes, and ds is the
stream’s deadline, which is the maximum tolerated latency
of the stream’s frames. Multiple TT streams may share the
network, all with their own timing constraints, resulting in
a complex scheduling scenario. In the remainder, we assume
that each stream is allocated to specific routes through the
network to reach all its listeners, and to a shared queue inside
each node in those routes.



C. GCL and Cycle Structure

As discussed, each device in the network has one or more
ports, and each port is associated with a Gate Control List
(GCL). This GCL controls opening and closing of transmission
gates for a set of priority queues {Q1, Q2, . . . , Qp} that feed
frames into that port’s outgoing link. When a queue’s gate
is open, frames from that queue may be transmitted onto the
egress link; if multiple queues are open simultaneously, the
highest priority traffic is sent first. When a gate is closed, the
frames in that queue are not transmitted, even if they are ready.

A GCL defines a cyclic pattern of opening and closing
times. To combine the timing of various TT streams with
periods Ts1 , Ts2 , . . . , Tsn , the GCL cycle is set as follows:

Tcycle = lcm(Ts1 , Ts2 , . . . , Tsn). (3)

Table I provides an example of a GCL configuration. The
table defines a single cycle divided into m time segments
∆1,∆2, . . . ,∆m. Each ∆i specifies the duration of a con-
tinuous interval of time in the cycle. The binary values xij
specify, for each segment i and each queue Qj , whether the
gate of that queue is open (1) or closed (0).

TABLE I
EXAMPLE STRUCTURE OF A GCL

Q1 Q2 . . . Qp

∆1 x11 x12 . . . x1p

∆2 x21 x22 . . . x2p

...
...

...
. . .

...
∆m xm1 xm2 . . . xmp

A GCL is properly defined if adding all the segment
durations ∆i yields the cycle time:

Tcycle = ∆1 + ∆2 + · · ·+ ∆m. (4)

As an example, consider a GCL cycle with Tcycle = 5 ms
and two segments: ∆1 = 2 ms and ∆2 = 3 ms. Suppose we
have three queues Q1, Q2, Q3. If during ∆1, Q1 and Q2 are
open (x11 = x12 = 1) and Q3 is closed (x13 = 0), and during
∆2 only Q3 is open (x21 = x22 = 0, x23 = 1), then:

• for t ∈ [0, 2) ms, Q1 and Q2 are open, and Q3 is closed;
• for t ∈ [2, 5) ms, Q3 is open, while Q1 and Q2 are closed.

D. Scheduling Constraints

For each stream s, let tstart,s(k) be the time at which period
k of the stream starts. Let tdelivery,s(i, k) be the time at which
frame i of stream s generated in period k is successfully
received by all its listeners. Recall that each stream s is
associated with relative release times of its frames trelease,s
and a relative deadline ds measured from the release time of
each frame (Eq. (2), [22]). Thus, every frame i of stream s
must meet:

tdelivery,s(i, k) ≤ tstart,s(k) + trelease,s(i) + ds. (5)

E. Objective

The goal is to determine GCL parameters (time segments
∆i, gate opening times xij , see Table I) for all GCLs in the
network such that all frames meet their deadlines, Eq. (5),
while minimizing the total end-to-end latency of all frames
in each period. Considering all frames i of all streams s in all
periods k of these streams in a hyperperiod of length Tcycle,
the latter can be expressed as:

min
∑
s

∑
k

∑
i

(
tdelivery,s(i, k)− (tstart,s(k) + trelease,s(i))

)
.

(6)

IV. DRL-BASED SCHEDULING APPROACH

This section presents our DRL-based adaptive scheduling
approach for TAS in IVNs. Our method leverages an RL agent
to configure GCLs. The agent tries to ensure that traffic meets
its deadlines and refines its scheduling strategy as network
conditions and traffic demands evolve.

A. Overall Framework

We model the scheduling problem as a Markov Decision
Process, where the agent (the scheduler) observes the allocated
set of streams to be scheduled, the reward for the latest tried
schedule, and the network state resulting from that schedule.
It then selects an action (scheduling decision, GCL parameters
for all GCLs) that aims to minimize end-to-end latencies while
respecting the timing constraints of the streams. The DRL
agent uses a policy network —trained via the Proximal Policy
Optimization (PPO) algorithm— to map system states to GCL
parameter assignments. Over time, the agent refines this policy
to improve adherence to deadlines and optimize performance
metrics such as latency and bandwidth utilization.

Fig. 1 illustrates how the DRL-based scheduler interacts
with the IVN in the training procedure. It shows the flow of
information between the agent and the environment, showing
how actions (GCL parameter assignments) affect network
performance and how feedback (reward and next state) guides
the agent’s learning.

Once trained, the agent can be deployed online within
a real or emulated IVN. Inference uses the learned policy
to compute GCL parameters based on the current network
scenario (set of streams, topology), without further tuning of
the agent’s neural-network weights. If the delay calculation
for the resulting schedule (explained below) shows that one
or more deadlines are missed, the agent reports a failure. In
such a case, a higher-level controller needs to take action,
e.g., reducing sampling rates of sensors, reconfiguring the flow
allocation, or adapting application settings, to ensure that a
feasible schedule is possible. This higher-level control is out
of scope for this work.

B. State Representation

At each decision step during training, the DRL agent
observes both the characteristics of all streams s and the
network conditions. It combines these into a normalized vector

os = [s̄∗, τ̄∗s , bavg
∗, Qavg

∗] (7)



Fig. 1. A conceptual diagram showing the DRL agent training

where each parameter p is scaled to a dimensionless form p∗.
Qavg represents the average queue filling in the entire network
and bavg represents average available bandwidth on the links.
The urgency factor τs for stream s measures how close that
stream is to missing its deadline. Before normalization, τs is
computed as

τs =
ds − fs

be

ds
. (8)

When τs is near 1, the stream s still has ample slack. As τs
approaches 0, that flow becomes increasingly urgent and must
be prioritized.

C. Action Space

In our DRL-based scheduling approach, each action corre-
sponds to configuring the GCLs for all device ports. Specif-
ically, an action determines both the length of each time
segment in the GCL cycle and which queues are open or closed
during those segments. This way, the agent fully specifies
the transmission schedule and gate states for every cycle.
Formally, if a GCL has m time segments and p queues
as in Table I, the action space must include the durations
∆1,∆2, . . . ,∆m for the time slots and the m×p binary matrix
defining which queues are open in each segment.

D. Delay Computation

We consider the delay per frame. Let the i-th frame of a TT
stream s traverse a path of L nodes, (v0, v1, . . . , vL−1), where
v0 is the talker and vL−1 is a listener. For each hop ek ∈ E
from vk to vk+1 (for k = 0, 1, . . . , L − 2), the frame may
incur a waiting time before it can be transmitted, followed by
a transmission time on the outgoing link.

Formally, the total end-to-end delay Ds,i for the i-th frame
of stream s is:

Ds,i =

L−2∑
k=0

[
W (vk, qs, tk,i) + Ttx,k,s

]
, (9)

where W (vk, qs, tk,i) is the waiting time at node vk for the
queue qs assigned to stream s, given that the frame arrives at

time tk,i and Ttx,k,s is the transmission time for a frame of
stream s over the link ek given by Ttx,k,s = fs/bek .

The waiting time W (vk, qs, tk) depends on the GCL config-
uration at node vk and the status of the queues, including qs,
associated to the port to which also qs is associated. The GCL
specifies open intervals during which the queue qs is allowed
to transmit. If the frame arrives during an open interval in
an empty queue, with all higher priority queues that are also
open empty, and with sufficient time to transmit the frame at
hand, the waiting time is 0. If it arrives in an open interval
with sufficient time to transmit all earlier frames in its queue,
all frames present and arriving in open higher priority queues,
and the frame itself, then the waiting time equals the time to
transmit all earlier frames in its queue and the higher priority
frames. In other cases, the frame needs to wait until the next
open interval, for which a similar calculation then needs to be
performed.

E. Reward Function

Our objective is to find a scheduling policy that maximizes
long-term performance. Although we compute a reward for
each communicated frame, the agent’s goal is to maximize
the total reward over all frames. Let F be the set of frames
considered during a scheduling horizon of one Tcycle. The total
reward is defined as:

Rtotal =
∑
i∈F

Ri, (10)

where per-frame reward Ri consists of three components that
reflect minimizing delays (while meeting deadlines), maintain-
ing a desired utilization, and avoiding late deliveries:

Ri = w1 ·Rdelay,i + w2 ·Rutilization,i + w3 ·Rpenalty,i (11)

with w1, w2, and w3 weights balancing the importance of each
component.
Delay Component: This component rewards minimizing de-
lays. For each frame i ∈ F belonging to stream s with absolute
deadline ds,

Rdelay,i =


ds −Ds,i

ds
, if Ds,i ≤ ds

0, otherwise.
(12)

If the frame arrives on time (or early), Rdelay,i is positive and
can approach 1 as Di becomes much smaller than ds. If the
frame is late, this term contributes no reward.
Utilization Component: We measure the overall utilization
(OU) of the allocated time to ensure that the policy does not
under-utilize or overload the network. Recall that E is the set
of links. Let OccupiedTimee be the total time a link e ∈ E is
transmitting data; let AllocatedTimee be the total time a link
e ∈ E has at least one gate involved in transmitting data open.
The overall utilization is:

OU =

(∑
e∈E OccupiedTimee∑
e∈E AllocatedTimee

)
× 100. (13)

From the given stream characteristics and network topology,
we define acceptable utilization bounds [Umin, Umax] and a



TargetUtilization (TU). If OU is within the acceptable range,
the utilization component rewards how close OU is to TU:

Rutilization,i =

1− |OU− TU |
TU

, if Umin ≤ OU ≤ Umax

0, otherwise.
(14)

This component is evaluated over a given time interval to
prevent the scheduler from simply reducing latency by over-
allocating gate opening times.
Penalty Component: If a frame i belonging to stream s is
late, we apply a penalty proportional to its lateness:

Rpenalty,i =

−
(Ds,i−ds)

ds
, if Ds,i > ds

0, otherwise.
(15)

In summary, by defining the total reward as the sum of
per-frame rewards, we provide immediate feedback to the
agent for each scheduling decision while still focusing on
improving long-term performance. Over time, the agent learns
a scheduling policy that aims to meet deadlines, maintains
efficient link utilization, and minimizes delivery time, in line
with the objective set out in Sec. III-E.

F. Deep Reinforcement Learning Algorithm

We use the PPO [24] algorithm for training. PPO stabilizes
the policy update process by restricting how much the policy
can change at each iteration. The policy πθ(action | space) is
parameterized by θ (weights of a neural network). The agent
iteratively interacts with the environment, collects trajectories,
and updates θ to maximize the expected discounted return over
a time horizon Tcycle:

J(θ) = E

TCycle∑
t=0

γtRtotal,t

 , (16)

where γt ∈ (0, 1) is the discount factor at time t. PPO uses
clipped objective functions and advantage estimators to ensure
stable and sample-efficient learning.

V. EXPERIMENTS

In this section, we describe the experimental setup and
evaluation results to validate our pre-trained DRL scheduler.
The goals of our assessment are threefold: to demonstrate the
adaptiveness of the scheduler to varying traffic conditions,
to evaluate its latency improvements, and to show that it
achieves lower idle times, which indicate more efficient use
of resources. We first outline the automotive network architec-
ture employed and describe the flow generation and scenario
configurations. In all experiments, we assume that all devices
are time-synchronized. Furthermore, we evaluated the meeting
of the deadline using the delay calculation described in Sec.
IV-D. To assess adaptiveness, we created several traffic classes,
each containing diverse traffic flows, and simulated multiple
network scenarios with varying levels of complexity and
resource contention. Our DRL-based scheduler demonstrated

Fig. 2. A representation of the zonal architecture in this work

the ability to rapidly adapt and generate efficient schedules
for each scenario. Finally, we compare the performance of our
approach to a known baseline to highlight its effectiveness in
improving latency and resource efficiency.

A. Network Architecture

We consider a fixed automotive network architecture based
on a zonal design. In a zonal architecture, the vehicle’s
internal network is divided into different zones or regions, each
containing a local switch or gateway [23]. Fig. 2 illustrates a
conceptual layout of the zonal architecture for an in-vehicle
network. Each zone aggregates traffic from local sensors and
ECUs, forwarding time-sensitive streams to other zones and a
central server via a high-bandwidth backbone.

B. Flow Generation and Scenarios

In our experiments, all links in the considered architecture
were configured with a fixed bandwidth of 100 Mbps. For
a comprehensive evaluation of our DRL-based scheduler, we
defined five distinct classes of traffic scenarios. Each class
progressively increases in complexity and difficulty, transition-
ing from conditions where flows encounter minimal contention
and relaxed timing constraints to those where multiple flows
compete aggressively for bandwidth and must meet stringent
deadline requirements. Table II summarizes these classes, in-
cluding their approximate bandwidth usage ranges, the ratio of
flow deadlines to periods (deadline range), and the number of
scenarios used for training and testing. In total, we generated
250 scenarios (50 per class) for training and an additional 50
scenarios (10 per class) for testing.

To maintain realism and consistency with automotive Time-
Sensitive Networking (TSN) requirements, the generation pro-
cess was guided by typical automotive constraints such as
latency limits and frame sizes. Table III provides an overview
of these typical TSN requirements [4].

C. Results and Comparison with EDF

To evaluate the effectiveness of our approach, we compared
our DRL-based scheduling strategy against an EDF scheduler
which is commonly referenced in TSN scheduling research
and has been successfully adapted for TAS in prior work [13].
EDF is widely recognized as a strong heuristic approach due
to its simplicity and ability to minimize delays for individual



TABLE II
PROPERTIES OF THE DEFINED SCENARIO CLASSES

Class BW Range (%) Deadline Range Train/Test
A 30–35% 0.8–1.0 50/10
B 40–50% 0.7–0.9 50/10
C 65–75% 0.5–0.7 50/10
D 85–90% 0.3–0.5 50/10
E 90–100% 0.2–0.4 50/10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Flow ID

0

25

50

75

100

125

150

175

En
d 
to
 E
nd

 D
el
ay

 (m
s)

Average DRL Delay
Average EDF Delay
DRL End to End Delay
EDF End to End Delay

Fig. 3. Comparison of per-frame delay vs. deadline in a simple scenario

streams, making it a suitable benchmark for assessing new
scheduling techniques. Since the EDF algorithm was not
initially tested on our benchmark, we implemented and applied
it to our scenarios.

Fig. 3 presents the per-frame delay distributions for both
DRL and EDF in a simple scenario from class A, demon-
strating how the DRL-based scheduler achieves lower average
latency. The green area indicates the range where flow delays
remain within their deadlines, signifying successful schedul-
ing. In contrast, the red area represents the region where flow
delays exceed their respective deadlines, indicating a failure
to meet the timing constraints.

Fig. 4 compares the overall average delays across different
classes under both scheduling policies with error bars rep-
resenting the minimum and maximum observed delays. The
results show that, as we progress from simpler scenarios to
more complex ones and deadlines get tighter, the average
latency decreases. However, DRL consistently achieves lower
average latency compared to EDF.

We further evaluated the average overall success rates for
each scenario class. A scenario is successful if all deadlines
are met. Fig. 5 illustrates the average success rates in different
scenario classes, and the error bars indicate min and max. For
Class A scenarios, both schedulers successfully schedule all
flows, achieving a success rate of 100%. However, starting
from Class B scenarios, the EDF begins to fail in some cases,
while the DRL-based scheduler maintains stable performance.
For Classes C-E, the EDF struggles significantly, while the
DRL-based scheduler, although not perfect, demonstrates no-
tably higher success rates. These results highlight that EDF
fails earlier and more consistently as scenario complexity
increases, whereas DRL provides better robustness and adap-
tiveness across a wider range of scenarios.

In addition to evaluating latency, we also analyzed the
idle time of links in various network scenarios. The DRL-

A B C D E
Scenario Class

10

20

30

40

50

60

De
la
y 
(m

s)

26.5

15.5
11.7 10.3 8.9

45.7

25.8
21.3

18.6
14.7

DRL
EDF

Fig. 4. Delay (average, min and max) comparison between DRL and EDF
approaches

A B C D E
Scenario Class

40

50

60

70

80

90

100

Su
cc

es
s R

at
e 
(%

)

100.0 100.0
96.6

89.8

77.1

100.0

92.4

80.6

67.3

49.0
DRL
EDF

Fig. 5. Success rates (average, min and max) for meeting flow deadlines
across different scenario classes

based scheduler demonstrated reduced idle times compared to
the EDF scheduler because of the effective use of available
resources. Fig. 6 illustrates the average idle time percentage
across different scenario classes. We compute this percentage
as IdleTime = 100%−OU, with OU as in Eq. (13), computed
only for backbone links between zonal switches and the central
server (Fig. 2).

Finally, we consider responsiveness to changes. Because
the DRL scheduler is pre-trained, it can respond to new
network configurations or adapt to changing traffic patterns by
recomputing a schedule within a few seconds, often within one
second. The exact response time depends on the computational
hardware used. With modern setups, the inference time for
generating new schedules is negligible, which makes the DRL
approach adaptive for online deployment in IVNs.

VI. CONCLUSION

This paper presented a DRL-based adaptive scheduling
method for the Time-Aware Shaper in IVNs, using RL based
on proximity policy optimization. The proposed approach
effectively addresses the limitations of heuristic scheduling
methods, outperforming EDF scheduling, particularly in mod-
erately complex and complex scenarios.

As other approaches, the DRL-based approach occasionally
fails to find a feasible schedule as the complexity of the traffic
scenario increases and bandwidth saturation approaches. This
limitation is a potential challenge for practical implementation
in highly complex real-world scenarios, where guaranteeing
consistent performance under varying conditions is critical.
To overcome this limitation, future research will focus on im-
proving performance by combining offline and online training,



TABLE III
REPRESENTATIVE AUTOMOTIVE TSN REQUIREMENTS [4]

PCP Traffic type Attributes Link Utilization Loss Tolerance
0 Best Effort (Data Tx., Diag., Others) Size: 64-1518 bytes; Timing constraint: 2000ms ≥ 25% Some
1 Video Stream 2 Size: 1518 bytes; Timing constraint: 50ms 1-20% Some
2 Reserved for future use N/A - N/A
3 Network Control/Management Size: 64-500 bytes; Timing constraint: 100ms 1-5% Few
4 Command & Control 2 Size: 64-1518 bytes; Timing constraint: 100ms 1-40% Few
5 Video Stream 1 Size: 1518 bytes; Timing constraint: 2ms 1-5% Few
6 Reserved for future use N/A - N/A
7 Command & Control 1 Size: 64-512 bytes; Timing constraint: 1ms 1-5% None

A B C D E
Scenario Class

10

20

30

40

50

60

70

Id
le
 (%

)

63.2

44.2

23.0

13.4

6.7

67.2

49.7

30.3
24.0

14.0

DRL
EDF

Fig. 6. Links idle time (average, min and max) percentage across different
scenario classes

building a more extensive and varied flow dataset, and further
refining the model to handle, e.g., network reconfigurations
and extreme workload situations. As it can never be fully
guaranteed to always find feasible schedules in heavy-load
conditions, it is also interesting to integrate the DRL-based
scheduler in an online application and resource orchestration
framework that can adapt application settings or resource
allocations in case of scheduling failures.

ACKNOWLEDGMENT

This work has received funding from the European Chips
Joint Undertaking under Framework Partnership Agreement
No 101139789 (HAL4SDV).

REFERENCES

[1] Z. Liu, W. Zhang, and F. Zhao, “Impact, Challenges and Prospect of
Software-Defined Vehicles,” Automotive Innovation, vol. 5, no. 2, pp.
180–194, 2022.

[2] C. Srinivasan et al., “Advanced Driver Assistance System (ADAS) in
Autonomous Vehicles: A Complete Analysis,” in Proc. 8th Int. Conf.
Commun. Electron. Syst. (ICCES), 2023, pp. 1501–1505.

[3] Y. Xu, J. Shang, and H. Tang, “Recent Trends of In-Vehicle Time Sen-
sitive Networking Technologies, Applications and Challenges,” China
Communications, vol. 20, no. 11, pp. 30–55, 2023.

[4] Y. Peng et al., “A Survey on In-Vehicle Time-Sensitive Networking,”
IEEE Internet Things J., vol. 10, no. 16, pp. 14375–14396, 2023.

[5] W. Kong, M. Nabi, and K. Goossens, “Run-time Per-Class Routing of
AVB Flows in In-Vehicle TSN via Composable Delay Analysis,” in
Proc. IEEE 95th Veh. Technol. Conf. (VTC2022-Spring), 2022, pp. 1–7.

[6] T. Stüber, L. Osswald, S. Lindner, and M. Menth, “A Survey of
Scheduling Algorithms for the Time-Aware Shaper in Time-Sensitive
Networking (TSN),” IEEE Access, vol. 11, pp. 61192–61233, 2023.

[7] G. Papathanail et al., “Dynamic Schedule Computation for Time-Aware
Shaper in Converged IoT-Cloud Environments,” in Proc. 27th Conf.
Innov. Clouds, Internet Netw. (ICIN), 2024, pp. 1–8.

[8] A. A. Syed, S. Ayaz, T. Leinmüller, and M. Chandra, “Dynamic
Scheduling and Routing for TSN based In-vehicle Networks,” in Proc.
IEEE Int. Conf. Commun. Workshops (ICC Workshops), 2021, pp. 1–6.

[9] W. Kong, M. Nabi, and K. Goossens, “NPTSN: RL-Based Network
Planning with Guaranteed Reliability for In-Vehicle TSSDN,” in Proc.
53rd Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), 2023,
pp. 55–66.

[10] J. Walrand, “A Concise Tutorial on Traffic Shaping and Scheduling in
Time-Sensitive Networks,” IEEE Commun. Surveys Tuts., vol. 25, no. 3,
pp. 1941–1953, 2023.

[11] H.-J. Kim et al., “Development of an Ethernet-Based Heuristic Time-
Sensitive Networking Scheduling Algorithm for Real-Time In-Vehicle
Data Transmission,” Electronics, vol. 10, no. 2, p. 157, 2021.

[12] L. Leonardi, L. Lo Bello, and G. Patti, “Combining Earliest Deadline
First Scheduling with Scheduled Traffic Support in Automotive TSN-
Based Networks,” Appl. Syst. Innov., vol. 5, no. 6, p. 125, 2022.

[13] R. Dobrin, N. Desai, and S. Punnekkat, “On Fault-Tolerant Scheduling
of Time Sensitive Networks,” in Proc. 4th Int. Workshop Security
Dependability Crit. Embedded Real-Time Syst. (CERTS), 2019.

[14] T. Stüber, L. Osswald, and M. Menth, “Efficient Robust Schedules (ERS)
for Time-Aware Shaping in Time-Sensitive Networking,” IEEE Open J.
Commun. Soc., vol. 5, pp. 6655–6673, 2024.

[15] E. Schweissguth et al., “ILP-Based Routing and Scheduling of Multicast
Realtime Traffic in Time-Sensitive Networks,” in Proc. IEEE 26th Int.
Conf. Embedded Real-Time Comput. Syst. Appl. (RTCSA), 2020, pp. 1–
11.

[16] S. S. Craciunas et al., “Scheduling Real-Time Communication in IEEE
802.1Qbv Time-Sensitive Networks,” in Proc. 24th Int. Conf. Real-Time
Netw. Syst. (RTNS), 2016, pp. 183–192.

[17] Y. Zhang, J. Wu, M. Liu, and A. Tan, “TSN-Based Routing and
Scheduling Scheme for Industrial Internet of Things in Underground
Mining,” Eng. Appl. Artif. Intell., vol. 115, p. 105314, 2022.

[18] A. Roberty et al., “Configuring the IEEE 802.1Q Time-Aware Shaper
with Deep Reinforcement Learning,” in Proc. IEEE Netw. Oper. Manag.
Symp. (NOMS), 2024, pp. 1–7.

[19] S. T. Islam and A. B. Muslim, “AI-based Dynamic Schedule Calcu-
lation in Time Sensitive Networks using GCN-TD3,” arXiv preprint
arXiv:2405.05019, 2024.

[20] P. Pop, K. Alexandris, and T. Wang, “Configuration of multi-shaper
Time-Sensitive Networking for Industrial Applications,” IET Networks,
vol. 13, no. 5–6, pp. 434–454, 2024.

[21] G. P. Sharma et al., “End-to-End No-wait Scheduling for Time-Triggered
Streams in Mixed Wired-Wireless Networks,” Journal of Network and
Systems Management, vol. 32, no. 3, p. 65, 2024.

[22] T. Stüber, M. Eppler, L. Osswald, and M. Menth, “Performance Com-
parison of Offline Scheduling Algorithms for the Time-Aware Shaper
(TAS),” IEEE Trans. on Ind. Inf., vol. 20, no. 7, pp. 9736–9748, 2024.

[23] A. Frigerio, B. Vermeulen, and K. G. W. Goossens, “Automotive Ar-
chitecture Topologies: Analysis for Safety-Critical Autonomous Vehicle
Applications,” IEEE Access, vol. 9, pp. 62837–62846, 2021.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
”Proximal Policy Optimization Algorithms,” arXiv:1707.06347, 2017.


