
LaDiS: a Low-Latency Distributed Scheduler for
Time-Slotted Channel Hopping Networks

Hajar Hajian∗, Majid Nabi†∗, Mahboubeh Fakouri∗, and Farzad Veisi∗

∗Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
†Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands

Email: hajar.hajian@ec.iut.ac.ir, m.nabi@tue.nl, m.fakouri@ec.iut.ac.ir, f.veysi@ec.iut.ac.ir

Abstract—Time-Slotted Channel Hopping (TSCH), as an op-
erational mode of the IEEE 802.15.4 standard, is a promising
medium access mechanism for industrial Wireless Sensor Net-
works (WSNs). However, efficient performance of such networks
depends on the medium access scheduling scheme, which is not
specified by the standard. This paper proposes a low-latency
distributed scheduler, called LaDiS, for multi-hop tree-based
TSCH networks. The main objective is to provide low end-to-end
data latency in convergecast WSNs with very low communication
overhead. The schedule of each node is determined by its parent
based on the available local information about the routing
structure and traffic requirement of that node. At the same
time, LaDiS provides proper opportunity for data aggregation
by relaying nodes in a multi-hop network leading to reduced
traffic. The performance of the proposed scheduler as well as
the existing distributed TSCH schedulers is extensively evaluated
in various setups. The results show that LaDiS considerably
outperforms others in terms of data latency in the networks
under consideration in this work. LaDiS is implemented and
integrated in the Contiki operating system.

I. INTRODUCTION

The IEEE 802.15.4 standard [1] is one of the widely
used communication standards that defines the physical and
Medium Access Control (MAC) layers for low-power Wireless
Sensor Networks (WSNs). Time-Slotted Channel Hopping
(TSCH) is an operational mode of this standard for supporting
industrial applications. In TSCH, a TDMA-based MAC ap-
proach together with a channel hopping scheme are exploited.
Channel diversity makes the network more reliable by reduc-
ing the impact of cross-technology interferences and multi-
path fading which are usually harsh in an industrial site. The
TDMA mechanism provides a collision-free communication
within the network which leads to a better predictability and
reliability for industrial applications with stringent require-
ments. The TSCH mechanism specified in the standard does
not provide any schedule for assigning TDMA timeslots to
wireless nodes for their packet transmission; the scheduler
design is left for the upper layers in the protocol stack.

In a distributed TSCH scheduler, wireless nodes decide
about their own schedule based on their local topological in-
formation. It makes the distributed schedulers suitable for dy-
namic and large-scale networks. However, since the scheduling
decisions are made locally by the wireless nodes without the
knowledge of the entire network, the extracted schedules may
be sub-optimum, and thus the required end-to-end Quality-

of-Services (QoS) such as latency and Data Delivery Ratio
(DDR) may be tricky to be satisfied.

This paper proposes an efficient low-latency distributed
TSCH scheduling mechanism, called LaDiS, for large-scale
convergecast WSNs. The network is assumed to use a multi-
hop tree-based routing protocol, such as RPL [2], on top of
the TSCH layer. In the proposed scheduler, nodes exploit local
routing information, and exchange small scheduling messages
with their children and parents in the tree structure to deter-
mine their schedule. Thus, it requires only local information
exchange imposing very low communication overhead. The
timeslots are assigned to the links in such a way so that
the timeslot(s) of a parent is placed after the timeslots of
all its children. This heavily decreases the end-to-end latency
for data convergecast, and provide a perfect opprtunity for
data integration and aggregation by the relaying nodes in
the routing tree. In summary, the main objectives of LaDiS
scheduler design are 1) low latency for delivering sensor data
to a central entity (sink node), 2) low communication overhead
and fast scheduling by exchanging only local information, and
3) providing appropriate possibilities for data aggregation by
the relaying nodes in the RPL tree.

The performance of the proposed scheduling mechanism
is evaluated in various conditions and scenarios. Simulation
results show that this algorithm significantly reduces the size
of slotframes. This is a requirement of many WSN applica-
tions. Moreover, the end-to-end data latency is considerably
improved for the scenarios under test. Also, the variation of
the achieved latency between different nodes are much less
than that in the existing algorithms. The proposed scheduler
is implemented and verified in the Contiki [3] operating system
and its network simulator (Cooja [4]).

The rest of the paper is organized as follows. Section II
reviews the related distributed TSCH scheduling algorithms.
The proposed scheduler (LaDiS) is presented in Section III.
In Section IV, the performance of LaDiS is evaluated and
compared with the related methods. Section V concludes.

II. RELATED WORK

The focus of this paper is on distributed TSCH scheduling
mechanisms for large-scale convergecast WSNs. DeTAS [5] is
a distributed traffic-aware scheduler for RPL-based networks.
Starting from the RPL tree leaves, each node notifies its

parent about the traffic required by itself and its sub-tree.
This procedure continues until the root of the tree receives
traffic requirements of all nodes. Then the root determines the
schedules for its children by sorting and categorizing them
into even and odd lists based on their traffic requirements.
Starting from the child with the highest traffic, every other
slots are assigned for transmissions by that node leaving slots
in between for transmission of the children of that child.
Accordingly, each node that receives its schedule determines
the schedule for its children, and this process continues until
all nodes receive their schedules. The algorithm requires a
procedure starting from leaves up to the root, and then down
taking long time and many packet exchanges. Also, data
aggregation by the parent nodes is not possible because the
parents forward the received packet in the timeslot right after
the reception timeslot.

Wave [6] is a distributed scheduling algorithm that uses RPL
information for scheduling. In this algorithm, it is assumed
that each node knows the set of its conflicting nodes. First,
the root sends a start message to its children. Each node that
receives this message and has the most number of packets to
send, assigns a schedule to itself taking into account the links
that are already assigned to the set of its conflicting nodes.
Compared to DeTAS, Wave produces longer slotframes which
may lead to higher data delivery latency. In addition, it has
higher overhead due to more number of message exchanges
for scheduling.

DIS-TSCH [7] is another distributed scheduler. During the
construction of the RPL tree, it allows every node in the
network to receive information about the node’s location
in the RPL tree from its parent. Then every node assigns
timeslots to itself and selects a conflict-free channel for data
communication. The initial assumption of this algorithm is
that the tree formed by RPL is a full tree. In the case that this
assumption does not hold, some timeslots remain unused (not
assigned to any node) which is a waste of bandwidth.

Orchestra [8] scheduler consists of simple scheduling rules,
and does not impose any communication overhead. Each
node independently decides about its schedule based on its
available RPL information. Three parallel slotframes are used
for different types of traffic, namely Enhanced Beacons (EB),
unicast transmissions, and broadcasts as well as RPL signaling.
Orchestra provides an efficient solution with simple imple-
mentation for many WSN applications. However, it is not
able to satisfy the required end-to-end latency in applications
with non-uniform traffic distribution, high sampling rates, and
stringent latency requirements [9].

This paper focuses on scheduler design for tree-based TSCH
networks for real-time industrial monitoring applications. The
schedules are determined by the parent nodes without the need
for gathering the whole traffic information in the root, leading
to faster scheduling with very little communication overhead.
The timeslots are ordered in such a way so that the end-to-
end latency is very low, and proper data agregation/integration
possibility is provided.

III. LADIS TSCH SCHEDULING MECHANISM

This section first presents the network structure and data
traffic model considered in this work. Then the LaDiS schedul-
ing algorithm is presented.

A. Network Model

Suppose that S = {s1, s2, ..., sn} is the set of n wireless
sensor nodes in an industrial WSN, each running the IEEE
802.15.4 TSCH standard for their MAC layer, and a tree-
based routing structure (e.g., RPL) as their multi-hop routing
layer. Node s1 is supposed to be the root of the routing tree.
Large-scale multi-hop convergecast networks are considered
in which all data items sampled by all the nodes in the
network are supposed to be delivered to the root (s1) with
low end-to-end latency (real-time industrial monitoring). The
LaDiS scheduling algorithm is responsible for determining
the transmission and reception timeslots and channel offset
(CH off) for each node. The scheduler algorithm running
in node si has access to the tree information of that node
including the node’s preferred parent (pi), set of its children
(Ci), and its rank (ri) in the routing tree. The length of the
TSCH slotframe (Lsf) may be preset at design time, or it may
be determined by the scheduler.

The nodes may have different data sampling rates. In the
beginning of each TSCH slotframe, every node si has qi bytes
of sensor data sampled during the previous slotframe. If si is
not a leaf node (Ci 6= ∅), it is responsible to receive data
from its children and forward them as well as its own data to
its parent. Thus, the total data bytes that needs to be sent in
each slotframe by si is Qi = qi +

∑
∀sk∈Ci

Qk. The LaDiS
scheduler is designed in such a way so that the nodes can best
exploit data aggregation or integration. It is done by scheduling
the transmission slots of each node after all timeslots dedicated
for transmission of its children. Assuming that the maximum
number of data bytes in each packet is Payload, si puts its
data traffic into at most dQi/Payloade packets. This value is
the number of timeslots required by si in each slotframe.

B. Overall Scheduling Mechanism

The LaDiS scheduling is performed after the routing tree is
constructed. Before scheduling, the minimal schedule defined
in the TSCH standard, consisting of only shared timeslots,
is used for the required packet exchanges by the routing
layer and the scheduling process. The LaDiS process starts
from the leaf nodes (at whatever level in the tree they are)
by sending scheduling request to their parent. A parent that
receives scheduling request determines the transmission slots
of the requested child, and sends the schedule back to that
child. This determines the reception slots of the parent node
as well. Accordingly, each (parent) node sends scheduling
request to its own parent after it schedules all its children.
As an illustrative example, consider the tree example shown
in Fig. 1(a), where the overall packet exchanges for scheduling
of such a tree is depicted in Fig. 1(b). This scheduling process
proceeds until it reaches the root node (time t3 in the example

1

2

3

4

(a) Example multi-hop
routing tree

S2 S3 S4S1 (root)

t1

t2

t3

t4

(b) Exchanged control messages

Fig. 1. Illustration of LaDiS’s general mechanism

of Fig. 1(b)). The scheduling process ends when the root node
(s1) schedules all nodes in the set of its children (C1).

At this step, the number of active slots in each slotframe is
known. This value determines the duty cycle of the network
if the length of slotframes (Lsf) is preset at design time. In
this case, the network is ready for data gathering right away,
and no further scheduling packet exchange is needed. As an
alternative option, this number of active timeslots (plus any
number of inactive slots) may be considered as the slotframe
length, if the length is not preset. In such case, Lsf needs to
be disseminated to all the nodes in the WSN. After reception
of Lsf by all nodes (time t4 in the example of Fig. 1(b)),
network will be operational and ready for data sampling and
transmission.

C. Scheduling Rules

Assume that Li is the set of timeslots that are assigned to
node si. The LaDiS algorithm that is run by every node in the
network satisfies the conditions stated in Eqn. 1 and Eqn. 2.

∀si ∈ S :
⋂

∀sj∈Ci

Lj = ∅ (1)

slotk ∈ Li ⇒ k > j, ∀j ∈
⋃

∀sh∈Ci

Lh (2)

Eqn. 1 ensures a collision free communication from children
to their parent. Eqn. 2 enforces that the slots assigned for
transmission of each node is located after all slots allocated
for transmission of its children. This is the key mechanism
of LaDiS to provide appropriate data aggregation/integration
possibility for the nodes in the multi-hop routes towards the
root node, and reduce the end-to-end latency. The rules also
ensure that no node has a timeslot which is both for packet
transmission to its parent, and reception from its children. The
example shown in Fig. 2 clarifies the concept. When s4 wants
to transmits its packet to s1, none of the dark-colored nodes
(i.e., s2, s3, s8, s9) are allowed to transmit in the same timeslot.
Note that for such nodes, the timeslots should be different even
if they use different frequency channels. Since the schedules
of each node is totally determined by its parents, both rules
are fully satisfied by LaDiS.

4

8 9

1

2 3

765

Fig. 2. Illustration of the scheduling rules

The TSCH mechanism provides the possibility to perform
parallel transmissions by using different channel offsets which
means different frequency channels for parallel timeslots.
Except the rules stated in Eqn. 1 and Eqn. 2, such parallel
transmissions can be exploited for other nodes that may be in
the interference range of each other in order to avoid collisions.
This reduces the size of slotframes, which in turn reduces the
duty cycle of the nodes leading to lower energy consumption.
LaDiS uses three different channel offsets in such a way so
that the nodes in the adjacent levels of the routing tree use
different channel offsets. Thus, the channel offset used by node
si (CH off i) is determined based on its rank (ri) in the tree
(CH off i = ri mod 3). In Fig. 2, nodes s5, s6, and s7 can use
the same timeslot as the one used for transmission by s4. But
to avoid possible interferences, different frequency channels
are used by setting different channel offsets.

D. LaDiS Scheduling Algorithm

Algorithm 1 describes the details of LaDiS’s mechanism
which is run by every wireless node in the network. Each
node waits to receive scheduling request from its children and
schedule them. The subset of children of node si that have
been scheduled is shown by C ′

i ⊆ Ci; this set is initially empty.
This part is continued until all children of si are scheduled
(i.e., C ′

i = Ci). If a node is a leaf node, it bypasses this part
since both C ′

i and Ci are empty from the beginning.
Function WAITFORREQUEST picks a scheduling request

from the buffer of the received requests from the children of
si if there are any. Provided that sj is a child of si (sj ∈ Ci),
the outputs of WAITFORREQUEST are lj and Qj , which are
the slot number of the last slot assigned to the children of sj ,
and the data traffic required by sj , respectively. Node si first
checks if it has already scheduled slots for sj ; it may happen
if the previous scheduling response packet has not reached sj
for any reason (interference or so). In this case, si sends the
already scheduled list of slots (Lj) to sj (lines 7-9).

Knowing lj , si can schedule all the transmission slots for
sj after the slots previously assigned to the children of sj .
It satisfies the LaDiS scheduling rule stated in Eqn. 2, which
firstly reduces the end-to-end latency because all data items
reach the root in a single slotframe. Secondly, it allows sj
to perform any kind of data aggregation/integration. Node si
adds the required data traffic of sj to its own data traffic
requirements (line 10). In lines 11 to 19, si starts from lj th
slot in the slotframe and looks for slots that have not been yet
assigned to any other children of si (the rule of Eqn. 1). In

ALGORITHM 1: The LaDiS scheduling algorithm by node si
Data:
Payload : Maximum data bytes per packet
pi: preferred parent of si
ri: rank of si
Ci: set of children of si
C′

i: set of children of si that have been scheduled (C′
i ⊆ Ci)

qi: traffic requirement of si in bytes
Li: set of timeslots that have been assigned to si
li: the last slot in the slotframe assigned to Ci

L′
i: set of timeslots that have been assigned to nodes in C′

i

Input:
qi: traffic requirement of si in bytes

1 C′
i = ∅; // No children of si is yet scheduled

2 Li = ∅;
3 L′

i = ∅;

4 Qi = qi;
5 while C′

i 6= Ci do // there are unscheduled children
6 (lj , Qj)← WAITFORREQUEST(sj); ∀sj ∈ Ci

7 if sj ∈ C′
i then // sj is already scheduled

8 SENDRESPONSE(sj , Lj);
9 else

10 Qi = Qi +Qj ; // simple data aggregation
11 k = lj + 1; // start from the slot after lj
12 λj = dQj/Payloade;
13 while |Lj | 6= λ do
14 while slotk ∈ L′

i do
15 k = k + 1;
16 end
17 Lj = Lj ∪ {slotk};
18 L′

i = L′
i ∪ {slotk};

19 end
20 SENDRESPONSE(sj , Lj);
21 C′

i = C′
i ∪ {sj};

22 end
23 end
24 if i = 1 then // si is root
25 if Lsf is not preset then
26 Lsf ← LASTSLOT(L′

i);
27 BROADCAST(Lsf); // flood the slotframe length
28 end
29 else
30 li ← LASTSLOT(L′

i);
31 SENDREQUEST (pi, li,Qi)
32 Li ← WAITFORRESPONSE(pi);
33 CH Offi = ri mod 3;
34 if Lsf is not preset then
35 Lsf ← WAITFORLSF();
36 BROADCAST(Lsf);
37 end
38 end

each iteration of the loop, one slot is added to Lj , which is
the set of slots scheduled for packet transmissions by sj . Also,
this slot is added to L′

i, which is the set of slots assigned to the
children of si so far. This set is needed when si wants to send
scheduling request to its parent. This process continues until
λi = dQi/Payloade number of slots are assigned to sj . After
that, function SENDRESPONSE sends the assigned timeslots
(Lj) to sj , and this node is marked as scheduled (line 21).

In the second part of Algorithm 1 (from line 24 onwards),
node si has scheduled all its children, and thus it is time for
sending scheduling request to its parent pi. If si is the root of
the tree, this part is not needed. In this case, the scheduling
process is finished. If LSf is not preset at design time, s1 finds

the last timeslot assigned to its children in the first part of the
algorithm, using function LASTSLOT (line 26). This number
will be used as the length of the slotframes (Lsf). The root
node broadcast Lsf , and it is repeated until all nodes receive
it using a simple flood-based one-to-all data dissemination.

If si is not the root of the tree (lines 30 till 37), it sends
a scheduling request to pi using function SENDREQUEST
containing the last slot scheduled to its children (li) and
its required traffic (Qi). Then it waits until it receives a
scheduling response packet from pi. This is done by function
WAITFORRESPONSE that returns the set of slots assigned to
si (i.e., Li). Note that function WAITFORRESPONSE waits
to receive the schedule from pi within a certain timeout. If
the timeout is over, the function retransmits the scheduling
request to pi. It is done because each of the request or response
packets may get lost because of interference or collisions.
After reception of the scheduling response, si knows its own
transmission slots. In the case that LSf is not preset at design
time, the node need to wait for reception of the slotframe
length to start its data communication. It is done by function
WAITFORLSF. All nodes participate in disseminating this
small control data (LSf) by broadcasting it.

E. An Illustrative Scheduling Example

We make use of an example tree, shown in Fig. 3(a),
to illustrate the LaDiS’s mechanism. The network consists
of n = 15 nodes, all running Algorithm 1. It is assumed
that qi = 30 bytes for all nodes, and the available data
Payload in each packet is 100 bytes. Thus each packet can
contain up to three data items. In the first step, leaf nodes
({s5, s8, s10, s11, s12, s13, s14, s15}) send scheduling
request to their parents. As an example, s9 receives scheduling
request from its children C9 = {s14, s15} in any order.
Assume that the request of s14 is received first. In the request
packet, l14 = 0 and Q14 = 30 bytes. Since s9 has not allocated
slots to any other child yet, it assigns the first slot in the
slotframe (slot1) to s14, and adds slot1 to L9. Later that s15
sends its scheduling request, s9 assigns the first slot after the
slot previously given to s14. Thus, slot2 is added to L9. The
same process is done for the rest of the leaf nodes. The result
of this step of the algorithm is represented in Fig. 3(b).

Now the nodes whose children have received their schedule
({s6, s7, s9}) start sending schedule request to their parent.
As an example, s9 sends scheduling request to its parent (s4)
containing l9 = 2 and Q9 = 90 bytes. s4 allocates slot3,
which is the first slot after l9 that is not in L4. Since Q9 is
still not more than Payload, only one timeslot is needed for
s9. The slot assignment process for the rest of the nodes at
this step is shown in Fig. 3(c).

The remaining steps of the scheduler are represented in
Fig. 3(d). For instance, when s2 is done with determining
the schedule of its children, it sends scheduling request to the
root with l2 = 5, and Q2 = 270 bytes (the total number of
the required data traffic by s2 and its sub-tree). As a result,
s1 must assign d270/100e = 3 timeslots to s2. With a high
chance, s2 sends its scheduling request after that of s3. Thus,

32

1

6

10

5

11

4

9

1514

87

1312

0

1

2

3

rank

4

(a) An illustrative routing tree example (max. degree = 3)

10 11
13

12

14 15

5
8

1 2

1

2

0

10,11,12
10,11,12

10,11,12
10,11,12

10,11,12
10,11,12

10,11,12

10 11

12 10 11

12 10 11

12

13
13

13
13

(b) All leaf nodes receive their schedule.

10 11
13

12 9

14 15

5
8

6 7

1 2

1

3

2

0

10,11,12
10,11,12

10,11,12
10,11,12

10,11,12
10,11,12

10,11,12

10 11

12 10 11

12 10 11

12

13
13

13
13

(c) {s6, s7, s9} receive their schedule.

10 11
13

12 9

14 15 3 3 2 2 2

5
8

6 7 4 4

1 2

1

8 7 6 5 4 3

2

0

10,11,12
10,11,12

10,11,12
10,11,12

10,11,12
10,11,12

10,11,12

10 11

12 10 11

12 10 11

12

13
13

13
13

𝒍𝒔𝒇 = 𝟖

(d) Scheduling of the remaining nodes.

Fig. 3. Three snapshots of the LaDiS process for an example routing tree.

s1 assigns the timeslots after l2 = 5 which are not previously
assigned to s3. Therefore, L2 = {slot6, slot7, slot8}, and the
length of the slotframes is set as (Lsf = 8).

IV. PERFORMANCE EVALUATION

We evaluate the performance of LaDiS, and compare it
with four state-of-the-art distributed TSCH schedulers, namely
DeTAS [5], Wave [6], DIS-TSCH [7], and Orchestra [8]. The
implementations of the 6TiSCH [10] protocol stack including
the RPL routing protocol and the Orchestra scheduler are
available in the Contiki [3] operating system. We implemented
LaDiS and integrated it to the existing 6TiSCH stack in
Contiki, and compared its performance with Orchestra using
the Cooja [4] network simulator of Contiki. However, since
the implementations of the other schedulers are not available,
we implemented simulation models of all others as well as
LadiS in MATLAB. It allows us to extensively investigate
the performance of the schedulers in various network scales,
topologies, and configurations.

TABLE I
SPECIFICATIONS OF THE ROUTING TREES USED IN SIMULATIONS

Tree name Tree type Network size (n) Degree Height
TP1 full 63 2 5
TP2 full 127 2 6
TP3 full 255 2 7
TP4 full 40 3 3
TP5 full 120 3 4
TP6 full 363 3 5
TR1 random 50 1-5 1-10
TR2 random 100 1-5 1-10
TR3 random 200 1-5 1-10
TR4 random 400 1-5 1-10

A. Performance Metrics

End-to-end data latency, as the time from data item gener-
ation by the source node until it reaches the root, is the main
performance metric evaluated in this work. In each setup and
for each scheduling algorithm, we measure the latency for data
items from each node. Then the average latency over all nodes
and its standard deviation are reported.

The length of the active part of the slotframe (Lsf) is another
metric. It specifies the maximum frequency with which each
node can send its data to its parent. Thus, the maximum
sampling and data transmission rate of each node depends
on this value. Also, in the case that the slotframe length is
preset at design time, the size of its active part determines the
duty cycle which is a key factor in energy consumption of the
nodes. To investigate the energy efficiency of networks with
different schedulers, we measure the total energy consumption
in the network per data item in various setups. For each node,
we count the number of transmission and receive slots, and
log the length of packets sent or received in those slots. The
power consumption profile of the Texas Instruments CC2650
radio chip (transmit power of 20.13mW , and receive power
of 19.47mW) is used.

B. Simulation Results

In the MATLAB simulation, various routing tree types with
different network scales are tested. Table I summarizes the
specifications of the investigated trees. In one hand, we test
full trees with node degree of 2 and 3 (TP1-TP6). The network
size (n) is selected in different ranges; the exact values are
picked to make full trees. Since routing trees are not likely to
be full trees in real-world WSNs, we also tested random trees
with four different sizes (i.e., n = 50, 100, 200, 400). For each
network size, 50 different random trees are tested, and the
average results over all trees are reported to have statistically
more reliable results. In making each random tree, the node
degree and tree’s height are randomly selected below 5 or 10
for full and random trees, respectively.

It is assumed that 100 bytes of data payload can be
included in each data packet. Each TSCH timeslot is used for
transmission of a single packet and its optional acknowledge
(timneslot size is 10 ms). For simplicity, it is assumed that
all nodes generate the same amount of data in each slotframe
(qi = 20 bytes, 1 < i ≤ n). Each data item consists of the
source node identifier, a sequence number, and sampled data

TP1 TP2 TP3 TP4 TP5 TP6
Tree

0

50

100

150

200

250

300

350

L
at

en
cy

 (

of
 ti

m
e

sl
ot

)

LaDiS
DeTAS
Wave
DIS-TSCH

(a) Achieved latency for full trees

TR1 TR2 TR3 TR4
Tree

0

100

200

300

400

500

L
at

en
cy

 (

of
 ti

m
e

sl
ot

)

1046 5053 28317 63208

LaDiS
DeTAS
Wave
DIS-TSCH

(b) Achieved latency for randomly generated trees

Fig. 4. Data latency in networks running different TSCH schedulers

which are in total 20 bytes. Therefore, up to five data items
can be put in each data packet.

Figure Fig. 4(a) shows the average of the achieved latency
and its standard deviation in full trees. LaDiS provides consid-
erably lower average latency compared to DeTAS and Wave
schedulers. However, DIS-TSCH performs better for some full
tress. This was expected since full trees are the best case for
this schedule. In terms of the standard deviation of latency
among different nodes, LaDiS performs the best. It means that
latency of data items generated by different nodes is not much
different, which means that a balanced distribution of network
resources between all sensors is provided.

Fig. 4(b) shows the latency in random trees. LaDiS results
in the lowest latency among all tested schedulers. DIS-TSCH,
which performed well for full trees scenarios, suffers from
very high latency and deviations in random trees. Significant
latency improvement by LaDiS compared to DeTAS and Wave
is due to the way of ordering timeslots and the possibility of
data aggregation that LaDiS provides.

Fig. 5 shows the slotframe length determined by each sched-
uler. Note that for random trees, the reported Lsf is the average
value over all 50 different random trees. LaDiS scheduler
ends up with considerably shorter slotframes. It means that
LaDiS is able to support higher data sampling frequency and
transmission rates than the others. The difference between
LaDiS and the other schedulers gets more visible when the
network size scales up, which confirms our expectation about
the scalability of LaDiS. This achievement is again due to the
data aggregation possibility provided by LaDiS. Again DIS-
TSCH performs well for full trees, but results is very long
slotframes for random trees.

Fig. 6 presents the average energy consumed in one second
of network operation per data item for setups that have close
slotframe length. It shows that the energy consumption of
the LaDiS algorithm is much lower than that in the other

TP1 TP2 TP3 TP4 TP5 TP6
Tree

0

1000

2000

3000

4000

5000

L
sf

 (
m

s)

LaDiS
DeTAS
Wave
DIS-TSCH

(a) Achieved slotframe length for full trees

TR1 TR2 TR3 TR4
Tree

0

1000

2000

3000

4000

5000

6000

7000

8000

L
sf

 (
m

s)

2,632,800 23,456,000 73,906,000 95,781,000

LaDiS
DeTAS
Wave
DIS-TSCH

(b) Achieved slotframe length for randomly generated trees

Fig. 5. The length of slotframes (Lsf) in various schedulers

TP1 TP2 TP4 TP5
Tree

0

0.1

0.2

0.3

0.4

0.5

E
ne

rg
y

(m
j)

LaDiS
DeTAS
Wave
DIS-TSCH

Fig. 6. Average radio energy consumption per generated data item in the
networks running different TSCH schedulers

algorithms. The main reason for this is the shorter slotframe
length provided by LaDiS, and the data aggregation which
reduces the number of packet exchanges.

C. Contiki Implementation and Test

As a proof of concept, the LaDiS scheduler is implemented
on top of the Contiki operating system, and its performance is
evaluated and compared with that of the Orchestra scheduler
using the Cooja simulator. Here, networks of size 10, 15, 20,
and 25 nodes are tested. In each setup, the nodes are randomly
deployed in an area of 100 × 100 meters. To have a fair
comparison between LaDiS and Orchestra, the idea of data
aggregation is implemented for Orchestra as well. Every node
generates a data item of size 20 bytes in each slotframe.

Fig. 7(a) shows the average end-to-end latency. The results
show considerably lower latency provided by LaDiS compared
to that in the Orchestra-based networks. It is because, in the
considered network scenarios, each node in each slotframe
produces a data item. The LaDiS mechanism performs a slot
allocation such that each data item produced at the beginning
of a slotframe reaches the sink node in same slotframe.
Therefore, the end-to-end latency of the network is less than
or equal to the length of the slotframe length. In Orchestra,

10 15 20 25size of network
0

200

400

600

800

1000

L
at

en
cy

 (
m

s)

LaDiS
Orchestra

(a) Average end-to-end latency

10 15 20 25
size of network

0

20

40

60

80

100

D
D

R
 (

%
)

LaDiS
Orchestra

(b) Data delivery ratio

Fig. 7. The performance results from Contiki and Cooja simulations

each node has only one timeslot is each slotframe. Thus, the
relaying nodes in the tree may need several slotframes to
deliver their own data as well as the data items received from
their lower level subtrees.

Fig. 7(b) presents the achieved DDR in various network
setup. LaDiS is able to deliver almost all data items to the sink
node. This achievement is due to the fact that the transmission
slot of the nodes in the lower levels of the tree are scheduled
earlier than their parents. Also the slot assignment is done
based on the traffic requirements of each node. Thus, the
memory demand for buffering the received data items in the
relaying nodes, which are typically memory-limited, is very
low. Therefore, no data loss occurs due to buffer overflow.
On the other hand, the channel offset allocation mechanism
in LaDiS helps the node to avoid collisions. In comparison,
Orchestra is not a traffic-based mechanism, and many data
items need to be stored in buffers leading to eventually buffer
overflows for the data generation rates in the tested scenarios.

As a notion of energy consumption, average duty cycle
of nodes are measured in Cooja. The average duty cycle of
a random network with 20 nodes is 13.7% and 10.3% for
LadiS and Orchestra, respectively. Therefore, LaDiS consumes
more energy than Orchestra. This extra energy consumption
is paid back by improved latency and reliability, which are of
more importance than energy consumption in typical indus-
trial applications. Orchestra is a light-weight TSCH schedul-
ing mechanism which provides efficient communications in
networks with low data generation rates. In an industrial
monitoring applications, which is the focus of this work, the
application may be interested to have frequent updates of
small data samples. As the results showed, Orchestra is not
able to support such applications, while LaDiS provides very
low latency and reliable data delivery with support of higher
sampling rates.

V. CONCLUSION

This paper proposes an efficient and low-latency TSCH
scheduler, LaDiS, for large-scale convergecast wireless sensor
networks. The timeslots scheduled for each node in the net-
work are placed after the transmission slots of its all children.
It leads to very low latency for data delivery to the root
(boarder router/sink), since all data samples reach the root
in a single slotframe. Moreover, it perfectly supports data
integration/aggregation because nodes receive their children’s
data before their own transmission turn. Only available local
tree information and limited local message exchanges between
children and their parent are used for scheduling, leading
to low scheduling overhead of LaDiS. The performance of
the LaDiS scheduler as well as that of four other distributed
TSCH schedulers are evaluated in various network setups.
The results show that LaDiS is able to provide considerably
lower data latency compared to the other distributed schedulers
for the industrial networks scenarios considered in this work.
Moreover, The length of slotframes that determines the data
transmission frequency of nodes is lower in LaDiS. LaDiS is
implemented, tested, and integrated in the 6TiSCH protocol
stack in the Contiki operating system.

ACKNOWLEDGMENT

This work was partially supported by the SCOTT European
project, that has received funding from the ECSEL Joint
Undertaking under grant agreements no. 737422.

REFERENCES

[1] “IEEE802.15.4-2015 - IEEE standard for low-rate wireless networks,”
IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011) (April
2016), pp. 1–709, 2016.

[2] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. P. Vasseur, and R. Alexander, “RPL: IPv6 routing protocol
for low-power and lossy networks,” Internet Engineering Task Force
(IETF), ETF RFC 6550, 2012.

[3] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in Proc. of the
29th IEEE Conf. on Local Computer Networks (LCN). IEEE, 2004.

[4] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
level sensor network simulation with COOJA,” in Proc. of the 31th IEEE
Conf. on Local Computer Networks (LCN). IEEE, 2006, pp. 641–648.

[5] N. Accettura, M. R. Palattella, G. Boggia, L. A. Grieco, and M. Dohler,
“Decentralized traffic aware scheduling for multi-hop low power lossy
networks in the internet of things,” in Proc. of the IEEE 14th Int’l Sym-
posium and Workshops on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM). IEEE, 2013, pp. 1–6.

[6] R. Soua, P. Minet, and E. Livolant, “Wave: a distributed scheduling
algorithm for convergecast in IEEE 802.15.4e TSCH networks,” Trans-
actions on Emerging Telecommunications Technologies, vol. 27, no. 4,
pp. 557–575, 2016.

[7] R.-H. Hwang, C.-C. Wang, and W.-B. Wang, “A distributed scheduling
algorithm for IEEE 802.15. 4e wireless sensor networks,” Computer
Standards & Interfaces, vol. 52, pp. 63–70, 2017.

[8] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra:
Robust mesh networks through autonomously scheduled TSCH,” in
Proc. of the 13th ACM conf. on embedded networked sensor systems.
ACM, 2015, pp. 337–350.

[9] S. Rekik, N. Baccour, M. Jmaiel, and K. Drira, “A performance analysis
of orchestra scheduling for time-slotted channel hopping networks,”
Internet Technology Letters, pp. 1–6, 2017.

[10] D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert, “6TiSCH:
Deterministic IP-enabled industrial internet (of things),” IEEE Commu-
nications Magazine, vol. 52, pp. 36–41, 2014.

